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A busy day @ SAP Concur
183,000 trips booked

409,000 expense reports
1 million mobile logins

760,000 mobile receipts uploaded

32,000 clients, 100 countries
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Performance Engineering is a Data Science

Data Information Insight Action



Math enabling computers 
to do a what a human can-

Derive insights from data in 
a specific situation 

What is Machine Learning?



Understand the problem, pick the algorithm

• What is the question?
• Machine learning algorithms
• Supervised
• Build a model using past data to make future 

predictions 
• Unsupervised
• Understand the structure of the data, with no 

past data to compare



Regression analysis for prediction

Goal: Build a Model [ y=f(x)] to 
understand customer experience 

Feature Engineering:
1. Understand your data 
2. Look for dimensions or features
3. How are they related?



Predict Response Time based on Load
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A little math

• Response time = f(Load)
• A linear model fits the data

• y = a + bx
• Examples 

x y=x y=2x y=3+2x
0 0 0 3
1 1 2 5
2 2 4 7
3 3 6 9
4 4 8 11
5 5 10 13



A little more math

• Response time = f(Load)
• A linear model fits the data

• y = a + bx

• Count is x, Response time (pnn) is y
• Solve for a and b

• ! = ∑ $ ∑ %& ' ∑ % ∑ %$
( ∑ %& '(∑ % ∑ $)&

• + = ( ∑ %$ ' ∑ % ∑ $
( ∑ %& '(∑ %)&

• Response time  = constant + factor * Load



A little code

Train the models

Make a prediction



Predictive Modeling of Response Times

Model predicts response times (red) based on measured load and compares it to monitored [actual] 
response times (blue)



Regression Model Use Cases

Evaluate Changes in Production before peak load

Less than optimal performance

Normalize Performance for Load

Detecting Outages



The hard parts

Pick an 
algorithm & 

model
Feature 

engineering Data wrangling

Training set Productionizing



Clustering

• Kmeans Clustering
• Unsupervised
• Segments data by similarity of features into K 

number of groups

• Algorithm
• Select center for each of K groups (centroid)
• Assign each point to nearest centroid 
• Calculate new center as mean of points in the 

centroid
• Iterate



A little code

• 17 Read the data
• 18 Clean it up 
• 19 Execute Kmeans for K=2
• 20 Print it out



KMeans Clustering of server performance
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Automatically finds different groups

Lines represent a server 

Server Index(ID)



K= 3

K =3 identified unique clusters

• Red Cluster is Data Center Server Group A
• Blue Cluster is Data Center Server Group B
• Purple is Servers with Power Saving On
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Clustering to look for multi-modal distributions



How many clusters? 
hierarchical clustering

Elbow Method
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Various Calculated Methods

Libraries  do it for you



Big Data & Data Science

Large data sets needed

Visualization needed

Where does it all go? 

Get it to people?

More data is better?



The Use Case

Question

• How can we understand the Customer Experience (performance) over time?

Requirements

• Leadership reporting 
• Long-term trending
• Agile/Dev-Op team accountability

Approach

• KPI’s and derived metrics
• Long Term Storage
• Easy Visualization



Approach Iterations

Dashboard Dump
• Too much data
• Too many questions

Apdex Overload
• What does it mean
• Where’s the insight

A simple metric, 
trended over time
• Peak hour performance, 

week over week
• Easy to get
• Easy to understand

Data Information Insight Action



Long term trending of customer experience through key endpoint performance
• Response time Distributions (25%, 50%, 95%)
• Peak Hour – Monday Morning 7-8 AM PST 

A Tableau Dashboard

Performance Metric Trending 



APM 
Monitors R Analytics Hadoop API

Hadoop 
Hive 
table

Tableau

Jenkins Job

Solution Architecture



Machine Learning for Outage RCA

• Question
• Can we use ML for Root Cause Analysis and  Prediction of major system 

outages?
• Premise

• Application error logs contain sufficient information to detect an issue 
• Application error logs contain sufficient details to identify and distinguish 

between system failure modes
• But is this true?



Error Log Counts and Correlations



Form a Vector

• Count messages in small time slices
• Each time slice forms a message count 

vector
• 3:00 am (0,2,2,1,3,6,6,1,260,…)
• 3:10 am (0,0,1,0,45,3,5,11,5,0,249,...)

• Normalize for load



m1

m2

m3

3:00 am

3:10 am

Message count vectors define 
events in a message space

Message Space



Train the model

• Classify these points as different events
• “Normal”, “DB Issue:, “App Server”, etc.

• Train the analysis engine to recognize these events
• Use Knn or other classifier to identify what type of event is occurring 

in real time
• Improve Root Cause Analysis 



Normal Monday
EUI Issue

EMT Issue

classify/predict events based on trajectory

Classify and predict events

• Identify RCA
• Predict/Prevent Issues



• Can we group messages based 
on similarity?

• Method:
• Clean messages
• Create a DTM (document 

term matrix)
• Kmeans- Clustering to 

group messages
• While this works, there is very 

little semantic similarity 
between messages.

Clustering them in this way was 
not valuable.

Message DTM

Clustered Messages

Intelligent Clustering of Error Messages
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Regression 
Analysis for

Response Time 
Prediction

Clustering for 
problem detection

Classification for 
RCA

Hadoop/R/Tableau 
for Deep Analytics

Machine Learning and Data Science for Performance and Quality Engineering


