
Could the
Software Engineering Institute

 be Wrong About
 Statistical Process Control?

Bob Raczynski

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 2

SPC – Some History

◆  Invented by Dr. Walter A. Shewhart in the 1920s
◆ Popularized by Dr. W. E. Deming in the 1950s
◆ Transformed the manufacturing world
◆ The SEI Capability Maturity Model for Software

(SW-CMM) included SPC as an integral
component in the early 1990s - in the name of
�predictability of process performance.�

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 3

What is SPC?

◆ �SPC is a way of thinking which happens to have
some tools attached.� – Dr. Donald J. Wheeler

◆ 2 main concepts:
◆ Eliminate assignable (special) causes of variation

where appropriate (uncontrolled variation)
◆ Understand normal (common) causes of variation

(chance variation)

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 4

CMMI for Development,
Version 1.2

◆ Maturity Level 4: Quantitatively Managed
◆ �Special causes of process variation are identified

and, where appropriate, the sources of special causes
are corrected to prevent future occurrences.�

◆ Maturity Level 5: Optimizing
◆ �Processes are continually improved based on a

quantitative understanding of the common causes of
variation inherent in processes.�

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 5

CMMI for Development,
Version 1.2

◆  The term "variation" is used 83 times in the CMMI.

◆  The term "special cause" is used 39 times in the CMMI.

◆  The term "common cause" is used 19 times in the
CMMI.

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 6

CMMI for Development,
Version 1.2 – QPM PA

◆  SG 2 Statistically Manage Subprocess Performance
◆ SP 2.1 Select Measures and Analytic Techniques
◆ SP 2.2 Apply Statistical Methods to Understand Variation
◆ SP 2.3 Monitor Performance of the Selected

Subprocesses
◆ SP 2.4 Record Statistical Management Data

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 7

CMMI for Development,
-Version 1.2

�Statistically managed process –
A process that is managed by a statistically based
technique in which processes are analyzed, special
causes of process variation are identified, and
performance is contained within well-defined limits.�

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 8

My Point:

◆  SPC has a significant amount of
emphasis placed upon it within
the CMMI

◆  An organization can�t exceed
CMMI Level 3 without doing
SPC

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 9

Digital vs. Physical Product
Manufacturing

Req Design
Construct/

Test
Produce

(make a copy)

SPC was
traditionally
applied here

The CMMI states that SPC should be
applied here

Contains no
recommendation for
SPC

Contains no
recommendation for
SPC

�3. Cease dependence on mass
inspection. ... We must note that
there are exceptions,
circumstances in which
mistakes and duds are inevitable
but intolerable.�

�Unfortunately, as is often the
case in such matters,
Shewhart's prospectus has
become orthodoxy for many
of today's quality control
practitioners.�

�Attribute Data differ from
Measurement Data in two
ways. First of all Attribute
Data have certain irreducible
discreteness which
Measurement Data do not
possess. Secondly, every
count must have a known
�Area of Opportunity� to be
well-defined�

�Control limits become
wider and control charts
less sensitive to
assignable causes when
containing non-
homogeneous data�

�However, in software
development it is difficult to
use control charts in the
formal SPC manner. It is a
formidable task, if not
impossible, to define the
process capability of a
software development
process�

Quote on next page

First Sommerville quotes Watts Humphrey:

�While there are clearly similarities, I do not agree with Humphrey that
results from manufacturing engineering can be transferred directly to
software engineering. Where manufacturing is involved, the process/
product relationship is very obvious. Improving a process so that
defects are avoided will lead to better products. This link is less
obvious when the product is intangible and dependent, to some extent,
on intellectual processes that cannot be automated. Software quality is
not dependent on a manufacturing process but on a design process
where individual human capabilities are significant.�

Sommerville then goes on to state:

�W. E. Deming, in his work with the Japanese industry after World War
II, applied the concepts of statistical process control to industry. While
there are important differences, these concepts are just as applicable to
software as they are to automobiles, cameras, wristwatches and steel.�

Doesn�t prescribe
SPC

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 21

Problems

◆ The following slides present four specific
problems which one faces when attempting to
apply SPC to a human-intensive, knowledge-
intensive process

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 22

Problem #1 – Wide Control
Limits

◆ When the normal variation is great (as in human-
intensive, knowledge intensive processes) the
control limits of the control charts become very
wide, and almost all variation is considered
normal

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 23

Problem #1 - Wide Control
Limits

Variation resulting from
normal causes

Variation resulting from
an abnormal event

Narrow control limits

Wide control limits

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 24

Problem #2 – Impossible to
eliminate all assignable causes

◆ First you have to detect them

◆ Then you have to identify them

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 25

Problem #2 – Impossible to
eliminate all assignable causes

◆  Different people
◆  Same people, but one or

more of the following
applies to one or more of
the people:
◆  Has more job stress
◆  Doesn't feel well
◆  Has more family stress
◆  Just quit smoking

◆  Lack of sleep
◆  Not enough caffeine
◆  Going through a divorce
◆  Mom died
◆  Lack of nutrition
◆  Under a schedule crunch
◆  In a bad mood

Some possible causes of variation in
 a human-intensive process:

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 26

Problem #2 – Impossible to
eliminate all assignable causes

◆  Bitter due to lack of recognition
◆  Has a cold
◆  Distracted due to automobile issues
◆  Lack of exercise
◆  Distracted due to political issues
◆  Is cold
◆  Is hot
◆  Being bothered by mother-in-law
◆  Has health issues

◆  Is becoming unsatisfied with job
◆  Has a toothache
◆  Is tired
◆  Is not familiar with the piece of code

being inspected
◆  Is hung-over
◆  Found out that he/she needs surgery
◆  Is recovering from surgery
◆  Is feeling depressed

Some more possible causes of variation in a
human-intensive process:

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 27

Problem #2 – Impossible to
eliminate all assignable causes

◆ The list goes on and on

My point:
◆  In any human-intensive, knowledge-intensive

process, assignable causes that are detected:
◆ Are difficult if not impossible to identify and
◆ Even if identified, are difficult if not impossible to

eliminate from the process (much easier with machines)

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 28

Problem #3 – Each Individual
Process is Different From

Invocation to Invocation
◆ No statistician alive would ever mix data from

different assembly lines in a single control chart

◆ Yet, that is exactly what happens when people
attempt to apply SPC to software development
process

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 29

Problem #3
- Each Individual Process is

Different From Invocation to Invocation
-Are all processes alike?

Processing elements
between invocations

virtually identical

Processing elements
between invocations
are different, but are

in the same class

Processing between
invocations in different

class

Inputs between
invocations virtually

identical

Manufacturing
process

Inputs between
invocations are

different, but are in
the same class

Software Inspection

Inputs between
invocations in different

class

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 31

Problem #3 – Each Individual
Process is Different From

Invocation to Invocation
◆  With every invocation of a software development

process:
◆  The input(s) to the process are not virtually identical
◆  The processing elements are not virtually identical

◆  In other words, there are multiple common cause
systems present which are difficult if not impossible to
isolate (resulting in non-homogeneous data)

◆  This is a fundamental distinction between manufacturing
processes and human-intensive, knowledge-intensive
processes

�We can conceive of
situations, such as variations in
the complexity of internal
logic or in the ratios of
executable to nonexecutable
statements, where simply
dividing by module size
provides inadequate
normalization to account for
unequal areas of opportunity.�

Problem #4 - Can�t normalize the data

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 33

Problem #4
Can�t normalize the data

◆ The area of opportunity is not easily quantifiable,
therefore normalizing the data isn�t practical

◆ The code samples on the following two slides have
vastly different areas of opportunity

#include <stdio.h>
#include <strings.h>
#include <stdlib.h>

int main(void)
{
 int number1, number2, number3, number4, number5, number6, ii;

 printf("\nPlease enter a number: "); scanf("%d", &number1);
 printf("\nPlease enter another number: "); scanf("%d", &number2);

 if (number1 > number2) {
 printf("\nThe first number is greater");
 }
 if (number2 > number1) {
 printf("\nThe second number is greater");
 }
 if (number1 == number2) {
 printf("\nThe first and second numbers are equal");
 }

 number3 = number1 + number2; printf("\nAddition: %d + %d = %d", number1, number2, number3);
 number4 = number1 - number2; printf("\nSubtraction: %d - %d = %d", number1, number2, number4);
 number5 = number1 * number2; printf("\nMultiplication: %d x %d = %d", number1, number2, number5);
 number6 = number1 / number2; printf("\nDivision: %d / %d = %d (no remainder calculated)", number1, number2, number6);

 printf("\n\n Have a nice day!");
 return 0;
}

McCabe Cyclomatic Complexity = 4
Number of Logical SLOC = 31

#include <stdio.h>
#include <string.h>
void main(void)
{
 #define VAL 63
 struct d {
 short a,b,c;
 float aa;} e;
 register int xx = -12;
 volatile char cf = ~xx;
 short fc = cf<<1;
 memset(&e,0, sizeof e);
 xx = scanf("%d %c", &fc, &cf);
 if(xx=cf=='f'?1:0) {
 e.a = 5;
 e.b = (e.a<<1)-1;
 e.c = (0x10)<<(2%e.a>>1);
 e.aa = ((((float)(e.a))*(float)(e.b<<1))/(e.b*(VAL^45)))*(float)(fc-(e.c == 1+(VAL>>1) ? 32:-44));
 printf("%c = %f\n", 'A'+2, e.aa);}
 else {
 short a[VAL&~060] = { (VAL>>3)-2 };
 short * ptr = &a[((sizeof a)>>1) & 0xfff5], **pptr = &ptr, *pttr = a;
 float * eaptr = &e.aa;
 *(++pttr) = e.c + 2*a[0] - e.a - (VAL>>a[0]);

 *(ptr -= 3) = ((*pttr + a[0])<<1) + sizeof (int);
 *eaptr = (float)(**pptr) + ((float)(*pttr*fc))/(float)a[0];
 printf("\nF = %f\n", e.aa);}
}

McCabe Cyclomatic Complexity = 4
Number of Logical SLOC = 31

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 36

Problem #4
Can�t normalize the data

◆ What is the area of opportunity of the previous
two code samples?
◆  I don�t know
◆  I have no way to accurately quantify it
◆  I can subjectively state that the latter code sample has

a far greater area of opportunity than the prior due to
the complexity of the code

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 37

Can we get around these
problems?

Problem Typical �Solution(s)�

Problem #1 – Wide control
limits

Assert that SPC is still applicable, the control
limits are just wide

Problem #2 – Impossible to
eliminate all assignable causes

Pretend that assignable causes are just like those
present in manufacturing processes (can be easily
detected, identified, and removed)

Problem #3 – Each Individual
Process is Different From
invocation to invocation

Assert that all processes are equal and continue to
advocate SPC as a silver bullet.
(Software Engineering = Hardware Manufacturing)

Problem #4 - Can�t normalize
the data

Divide by logical SLOC, separate data-lists,
tables, and arrays from other code. Then claim
that the unequal areas of opportunity have been
accounted for.

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 38

Can we get around these
problems?

◆ Maybe the answer isn't to try so hard to get around
the problems.

◆ Maybe SPC just isn't the right tool.

◆ Maybe we are trying too hard to fit a square peg into
a round hole.

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 39

So was the SEI wrong about
 SPC for SW Dev processes?

◆  Even so, your overall system will hardly be more predictable

Is this the best use of your limited resources?

◆  Well, if you do apply SPC to software development processes, you
might occasionally get lucky and detect an assignable cause of
variation despite the wide control limits of your control charts,
unequal area of opportunities, and ever-changing processes

◆  Of the assignable causes of variation that you do manage to detect,
you might occasionally get lucky and actually identify one of the
causes of that variation

◆  Of the very few assignable causes of variation that you manage to
identify, one of them might occasionally be of a nature in which it can
actually be removed with some persistence

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 40

So was the SEI
wrong about SPC?

◆ Technically, one can apply SPC to any process

◆ The Question is how useful doing so will be

◆ What the SEI got wrong is the amount of emphasis
that they placed on using SPC with engineering
processes

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 41

The other thing the SEI got
wrong about SPC:

◆ Maturity Level 5: Optimizing
◆ �Processes are continually improved based
on a quantitative understanding of the common
causes of variation inherent in processes.�

�Since reengineering a
process is never cheap,
it should be undertaken
only when it is needed.�

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 43

How did SPC get into
the CMMI in the first place?

Req Design
Construct/

Test
Produce

(make a copy)

SPC was
traditionally
applied here

The CMMI states that SPC should be
applied here

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 44

How did SPC stay
in the CMMI for so long?

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 45

So, what is an alternative to SPC?

◆  Have experienced and technical SQE on your staff.
◆  By working directly with the people while the

development is progressing they can:
◆  Recognize when abnormal events are happening (even without

control charts)
◆  Frequently prevent problems before they occur
◆  My experience is that other quantitative techniques are more

useful (e.g. inspection coverage report)
◆  Lead process improvement efforts (even without control

charts)

◆  For predictability of the overall system, use a parametric
modeling tool (e.g. SLIM by QSM)

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 46

What the SEI needs to do
◆ De-emphasize SPC

◆ Recommend taking the same approach as ISO
9001:2000:
�… shall include determination of applicable methods,
including statistical techniques, and the extent of their
use.�

◆ Consider collapsing at least level 5, and possibly
levels 4 and 5, as the distinctions are largely based
on SPC

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 47

Director of the SEI
- Nice guy. Give him a call

◆ Paul Nielson
◆ nielsen@sei.cmu.edu
◆ +1 412 268 7740

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 48

My contact information

◆ Bob Raczynski
◆ bobraczynski@computer.org
◆ +1 303 971 3907

�It is not necessary to change.
Survival is not mandatory.�

- W. Edwards Deming

One last Deming quote:

Systems and Software Technology Conference, 2007 - Bob Raczynski Slide 50

Acronym List
◆  PA – Process Area
◆  PSM – Practical Software and Systems Measurement
◆  QPM – Quantitative Project Management
◆  QSM – Quantitative Software Management
◆  SEI – Software Engineering Institute
◆  SG – Specific Goal
◆  SLIM – Software LIfecycle Management
◆  SLOC – Software Lines Of Code
◆  SP – Specific Practice
◆  SPC – Statistical Process Control
◆  SQE – Software Quality Engineer
◆  SW-CMM – Software Capability Maturity Model

