Data Object Pattern in Complex Business Objects Testing
Dmitri Korolkov, dmitri.korolkov@gmail.com

Problem

Automated tests perform some operations with System under Test (SUT) objects. In most cases unit tests have no problem with operating with business objects, because they have direct access to all related classes in runtime. But in automated customer testing scripts can operate with SUT objects indirectly, via some interfaces: graphical user interface (GUI), application programming interface (API), command-line, etc.
Business objects may contain a number of data fields. If many of these fields are supposed to be used in some data or behavior verification, the problem of business data storing can appear.

Local variables

All business objects data required by test scenario can be stored in local variables of test script method or auxiliary procedure. This approach is good, but only if SUT is simple enough, and test scenarios are straight. Otherwise this way of tests implementation may result in Obscure Test Smell [1] - if test requires few objects of the same type, a number of variables with common names may appear.
Domain Test Object

In some more complex systems Domain Test Object pattern [2] may be used. In this approach objects are used for modeling SUT objects. Set of classes, which correspond to business objects and have same relations should be implemented.
But if the SUT is rather complex, and business objects state and behavior are sophisticated, Domain Test Objects will probably turn out to be too twisted. If relations between business objects in SUT are formed with the help of some auxiliary internal classes, such relations cannot be implemented within limitations of black box testing. Also, abstraction of domain object class in most cases will be unclear: it should provide interface for interaction with SUT, for checking data values and for behavior verification – that’s much more that SUT object’s interface.
Data Object pattern and Test Utility classes
One of possible solutions is to use a combination of the following design patterns:
1. Separate operations on SUT and test data with the help of Data Transfer Object (or just Data Object) pattern [3]
2. Create set of Test Utility Methods [1] grouped in Test Utility Classes which perform some interactions with SUT.
Data Object is an object which just contains data, and do not have any behavior. Business objects’ data can be stored in such objects [1]. They can be created and modified along with SUT object by Test Utility Methods, and Data Objects can be used for identification of business object and data and behavior verification.
Example

Let’s consider the following example. There’s SUT that provides GUI for mailboxes managing. Specific business test should perform mail delivery checking and validation of mailbox properties stored in some database (DB).

The following classes can be implemented:

MailboxTests – TestCase class

MailboxData – mailbox data object (contains only data, no behavior)
MailboxDbManager – manager that provides DB checking

MailManager – manager that provides methods for mail delivery checking

MailboxUiManager – manager responsible for interacting with SUT via GUI
Test execution can be illustrated with the following sequence diagram:
[image: image1.emf]MailboxUiManager MailManager MailboxTests MailboxData MailboxDbManager

1 : createMailbox()

2 : create()

3 : addEmailAddress()

4 : addEmailAddress()

5 : checkEmailAddresses()

6 : getEmailAddresses()

7 : getPop3ServerParameters()

8 : setPop3ServerParameters()

9 : checkReceivingFromExternalMailboxPop3()

10 : getPop3ServerParameters()

When test scenario calls manager class method, it passes pointer to MailboxData instance as argument. In managers methods this object is used for business objects identification and data validation. If some specific check requires information related to business object that was not set during data object initialization, this data can be get via auxiliary method call (POP3 server parameters are get from UI via MailboxUiManager::getPop3ServerParameters() method used in MailManager::checkReceivingFromExternalMailboxPop3() method).
This simple example shows general idea of Data Object usage. Gain of this approach is rather significant if business object has a number of properties that should be verified in UI, Database, Directory system or some other storage:

MailboxDbManager::instance()->checkDisplayName($mailbox);
MailboxDbManager::instance()->checkAlias($mailbox);
MailboxDbManager::instance()->primaryEmailAddress($mailbox);
In complex behavior testing data object can be passed to testing method instead of number of arguments. Obviously, the following construction:
MailManager::instance()->checkSendingToExternalMailbox($mailbox);
is much clearer than

MailManager::instance()->checkSendingToExternalMailbox($fromAddress, $smtpServer, $password, “SSL”);
Data Objects Classes Generation
Data object contains a number of fields that are set by some methods and got by others. Access functions are trivial, and manual creation of such classes is exhausting. Some languages support data object types or give mechanisms that automatically provide get and set methods. If programming language used for customer testing automation does not support these mechanisms, data object generation can be easily implemented. Object fields and their types can be stored in XML format. For example:
<DataObject>

 <ClassName>MailboxData</ClassName>
 <Fields>

 <Field>

 <Name>addressMailName</Name>

 </Field>

 <Field>

 <Name>addressDomainName</Name>

 <Type>DomainData</Type>

 </Field>

 <Field>

 <Name>password</Name>

 </Field>

 <Field>

 <Name>smtpServer</Name>

 </Field>

 <Field>

 <Name>pop3Server</Name>

 </Field>

 <Field>

 <Name>imapServer</Name>

 </Field>

 </Fields>

</DataObject>

Benefits

Main benefits of this approach are:
1. Clear responsibilities of all instances: Test Utility Classes, Test Case classes, Data Objects.

2. Clear code of test scenarios and auxiliary methods

3. Less arguments for auxiliary methods

4. Abstract data objects can be used for common Test Utility Methods implementations
5. Shared Fixture [1] pattern can be implemented easier
6. Data Driven Tests can be implemented easier
Results

Prototype tests implemented with data objects were easy readable, they contained rather clear operations with business objects models. Transfer from using just Test Utility Methods to Test Utility Methods + Data Objects led to Lines of Code metric reducing by 30%.
References

1. XUnit Test Patterns, http://xunitpatterns.com
2. Design Patterns for Customer Testing, M. Rybalov

3. Core J2EE Patterns – Transfer Object, http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
