
 REUSABLE COMPONENTS

Enterprise Strategy for Nurturing Reusable Components

Vijay Shankar Athmalingam

(Think Business Networks, August 2001

For additional information, contact

Vijay Shankar

Project Manager- EMS Team

697-A, Trichy Road, Coimbatore

India-641045.

E-mail: Vijay@thinkbn.com / vjathma@yahoo.com

Phone: +91-0422-320 606
Enterprise Strategy for Nurturing Reusable Components

Preamble

Every enterprise, tries to leverage the knowledge gained working on projects or products. Basically the reusability would start with every team building utility components. These components exist as logging tools, math libraries and some general components. But the question is how much of enterprise wide benefit has these components provided? To understand the answer to the question, the enterprises and development teams should be able to understand different segments of reusability. The paper focuses to convey this.

The paper also explains, on how to identify good reusable components and describes a strategy for maintaining reusable components.

Reusable components – types

Reusable components are well-defined modules in the system. Reusing existing components and building applications is a natural software engineering activity.

Every organization invests time on reusing the software or pieces of code modules, to leverage the fact that they could reduce the cost of development and the time to market.

Component Reuse is classified into two general types

· Black box reuse

· White box reuse

In the case of black box reuse, the component is used as-it-is in the development process. Basically there is no code change done to these components. The basic requirement of building such black box reusable components are (A) The components should be functionally complete and (B) the intent of the component should be published.

In the case of white box reuse, the team that reuses the component modifies the existing component to a certain extent like adding a new responsibility or changing a bit of it.

Besides just the classification of reuse, black box reuse is more preferred than that of the white box reuse. The reasons for non-preference of white box re-use is due to fact that the modified component must undergo a complete set of testing process as that of the new software written. Apart from this, additional effort has to be spent for the configuration management, development and maintenance. Configuration management becomes a difficult task, when there is a change in the responsibilities of the component.

Levels of reuse

Vertical and horizontal forces govern software development effort. The vertical forces are domain specific. They are more pertinent to the domain of the problem. For example the vertical force of developing an Element management system might not be the same force for an e-Commerce application or banking application.

When a reusable component is built to address this domain dependant force, then the component is reusable for the application domain alone. However the usefulness of this component to the enterprise would be around 20% to 85% depending on the business requirements of the enterprise.

· The second level of reuse is to address the horizontal forces in the software development. These forces are common across the projects irrespective of the domain. Some of these forces are described in the FURPS + model. These forces are

· Functionality

· Usability

· Reliability

· Performance

· Scalability

· Change

· Complexity

Horizontal force repressing reusable components could be Abstract data types, utility classes / beans, queues introduced for performance effectiveness and presentation models. In the second level re-use, there is usually a maximum of 20% of reusability achieved.

Impact of adding reusable components

The software development using the reusable components is considered analogous to engineering, where components are manufactured separately and get assembled in the assembly line to make the final product.

If the same analogy were extended to component engineering, development teams would come out saying “Reuse is something that is far easier to say than to do”. Generally reusable components are considered resilient during component interaction. This depends on how and where the component gets assembled in the system.

This gives another dimension for classification of reusable components. In general the classification can be captured using the following grid.

Single tier

Multi-tier

 White box reuse

 Black box reuse

Figure 1: Impact of reusable components [For illustrating the impact of the reusable component across tiers an Element management system has been used]

Independent of the black or white box reusable components, if a component spans multiple tiers, addition and deletion would be felt in multiple layers of the system.

Design reuse vs. code reuse

Another view on reusability would be reuse of design. Design reuse is effective than reuse of the code. The following is the justification given for the thought.

The design model for any problem is solved by a set of components interacting with each other. This interaction is represented using a hierarchy as given below.

[image: image1.jpg]
Figure 2: Design reuse and component reuse

If the intent of the development team were to just build and reuse only components, then the team would be focusing on solving only packets of the problems. These are represented as the lower most components in the trees. In the case of design reuse, the reuse is not only just reusing the single component, but to use the entire array of the components.

Such types of design reuse would happen when the knowledge of the team in providing solutions for a problem domain is significantly higher. Also that the team has demonstrated the fact that the design works successfully confirming to requirements.

Needless to say that the development teams should focus on design reuse rather focusing on code reuse, since the benefits are more applaud able.

Attributes of effective reusable components

As development teams rightly express “Reuse is easier to say than to do! Planning, developing, identifying and managing reusable components have not been that easier. First requirement of a reusable component is to have a proper documentation. Apart from this identifying reusable components may be time consuming and effort driven.

The following are some good attributes of reusable components.

1. Functional completeness – The reusable component must have DEFINED responsibility to be satisfied. The component should take in all the required operations of the current requirements.

2. High cohesion – The component should have defined functional responsibility with minimal external dependencies.

3. Interfacing requirements – The component should exhibit resilient interfacing mechanism when interfacing with other components. There should be minimal or no change during aggregation of components.

4. Error handling – The component should exhibit high exception handling mechanisms and the errors handled should be published.

5. The world’s best book is useless if it is not read!

6. Reliable – One of the most driving requirements of a component being reusable is that, the component should be reliable. Exhibiting a low reliability level would not make the consumers use the component.

7. Portability and inter-operability requirements – A major factor to make the reusable component illustrious is the fact that it is portable to all platforms.

8. Usability – Major factor-affecting reuse as well as software industry is that the ideas and thoughts are not articulated between development teams. As depicted, the world’s best book is useless if the book is not even read. A reusable component is complete only when the component is available with the right set of documentation that is easier to read and understand. One general rule is that the extensive documentation has to be provided with self-documentation code and in-line comments apart from user manuals and technical documentations.

Benefits of reusability

The major benefits of reusability are

Reduce the time-to-market.

As every one knows, faster time to market with better and unique products has been the key mantra for development organizations.

Lower development, maintenance and training costs

Enterprises want to be competitive in cost against competition. Using reusable components is one way to provide solution to this problem. By reusing a good tested component, means there are lesser chances of the component being defective. Which increasingly means lesser maintenance cost.

Lowers Risk

The risk factor of software deliverable is reduced to a great extent by the use of component reuse. Care should be taken in such a way the reusable components are tested and reliable before institutionalizing for reuse.

Enterprise strategy

As rightly said, “Most experienced programmers have private libraries, which allow them to develop software with about 30% reused code by volume. – Jones”

Programmers, who tend to reuse the component that they had already produced, have experienced reuse. In effect, every organization has great programmers who plan, build and reuse their private set of components. As an organization, the impact of such reuse could be minimal. The benefit of the reuse is not felt in its fullest sense when enterprise ignores the fact on reuse and does not have an enterprise wide focus on nurturing and building reusable components.

This has been said because; the fact another team in the same organization would have developed a solution to solve a similar problem. There by such an organization becomes “Islands of reusable components”. As a whole the organization is not effective in leveraging the time and effort spent in developing such components. Hence as organization focus on getting maturity levels in process, organizations should also focus on their maturity to identify and institutionalize reusable components.

1. The following guideline could be followed to help the organization grow in the right direction to leverage the “private reusable components”

2. Enterprises should have the commitment to develop reusable components and should clearly identify and communicate the vision.

3. Enterprises should express their commitment and should have effective cross-functional teams to focus towards this effort.

4. The team should identify key and auxiliary components across development effort. This could be achieved by encouraging the teams to submit the reusable components that the “private team” operated on.

5. The team that collects this can have a standard format to collect the required information. A sample template that has been used has been published.

6. The team understands how the reusable components relate across the project. This may not be possible in all the cases, if the domain forces are large. If the organization focuses on different domains, then re-use of design across projects would be little ductile. Nevertheless, reuse could occur to address vertical forces.

7. The team investigates and recommends a standard implementation pattern and mechanism for reuse.
Conclusion

Concluding the paper on building reusable components, more than the individual focus and interest in reusability, if the organization does not have the commitment and a vision to focus in this direction, the true benefits of using reusable components will be a nightmare.

About the author

The author had his Master in Computer Applications from a premier institute in India, PSG Tech and has eight years of industry experience. He has delivered successful projects in the Telecommunications domain with working experience on switching device like DMS-100, 5ESS and knowledge in major areas of TMN model. Recently he has managed and delivered element management solution for Remote Digital Terminals on VoIP domain. The author has experience in institutionalizing patterns and pattern based approach. Currently the author is technical head, managing reusable components. The author has also been a member of IFPUG (International Function Point Users Group).

The author can be reached via e-mail Vijay@thinkbn.com or vjathma@yahoo.com

	Template

REUSABLE COMPONENT

	Name
	

	ABSTRACT

[Provide brief abstract of the component submitted with source and binaries]
	

	DESIGN

[Provide the design of the code and major design decisions]
	

	DEPENDENCIES

[Identify any dependencies, such as other software components, 3rd party tools / utilities]
	

	RELIABILITY

[Provide the reliability details for the component. Also mention the conditions of software and environment requirements for achieving the specified reliability]
	

	CONSTRAINTS

[Provide restrictions of the component in terms of design constraints, technology or performance constraints]
	

	API DOCUMENTATION

[Provide API documentation of the component, with all the interfaces well documented]

	

	INSTALLATION REQUIREMENTS

[Provide installation requirements or usage samples to effectively use the component]
	

	TEST RESULTS

[Provide test strategy, test cases, test results and test history]
	

	TESTABLE SAMPLE

[Provide usage samples for the component]
	

	COST SAVING

[Mention the cost saving that the consumers would expect in terms of Function Points]
	

Customized presentation

[Example: Customization of a report module]

Functionality addition

[Example: Addition of customized functionality based on business needs – customization of consolidation logic alarms]

Functionality addition

[Example: Adding trouble ticketing]

Code libraries

[Example: Adding of adding Queue for improving performance of the fault management system]

10

