Interpreter pattern for user-defined scenario

Ashish Srivastava

Wipro Technologies, Bangalore, India

An Interpreter Pattern can be used to parse the user-defined language. This pattern is used mainly to strengthen code reusability, maintainability and flexibility. Pattern describes how to define a grammar for simple language, how to represent sentences in the language and how to interpret these sentences. The Interpreter pattern makes grammar easy to implement and extend. Adding new interpreters to a grammar is simple. On the other hand Interpreter Pattern should not be used when the grammar is complex and when efficiency is a concern.

Introduction

The Interpreter design pattern is used in situations when there is a simple grammar that can be expressed in the form of an abstract syntax tree. The Interpreter class examines the context and interprets it based on the rules contained within the abstract syntax tree. It does this by passing the context to each class down the branches of the tree. The classes, which represent rules, apply their specific rule and return the un-interpreted context for the next class until it complete.

Creation of interpreter can be done by defining the interpret operation on each subclass of the base classes. Interpret takes an argument, the context, to interpret the expression. The context contains the input string and information on how much of it has been matched so far. Each subclasses of base class implement Interpret method to match the next part of the input based on the current context
This pattern is applicable when there is a user-defined language to interpret, when the statements in the language can be represented as an abstract syntax tree. The Interpreter Pattern allows us to do any of the following:

· Interpret sentences with no context.

· Interpret sentences with a context.

· Update or change a context during interpretation.

User Scenario

Suppose there is a scenario where there is a concept of manager and agent. Depending upon the configuration, an agent will be reporting to manager. Manager is totally dependent on the configuration file shown below. This file needs to be parsed and proper validations need to be done depending upon the keys. Here [PATTERN] section mainly responsible for particular OS type, about the scope and the value is for the particular scope. Similarly there is another section [APPLICATION_INFO], which is responsible for supporting various functionalities of manager depending upon its key definitions, and it is applicable for other sections.

Consider the following grammar to be interpreted –

[PATTERN]

TYPE = NT

SCOPE = REGION/CLUSTER/HOST/TOPOLOGY/ALL

VALUE = # THIS DEPENDS ON SCOPE FIELD
[APPLICATION_INFO]

READ_ON_SERVICE_START = Y/N

UNREGISTER_ON_APPLICATION_SHUTDOWN =Y/N

 CAL_USED = y/n

 PROBLEM_TYPE=
auto/manual

[ACTION_INFO]

XYZ = ….

ABC = …

Etc….

[CONDITIONGROUP]

ID = GRP1
[CONDITION]

ID = Cond1
 [CALENDAR]

OPTIONAL FIELD

ID = “CAL1”

Approaches

There were various approaches to implement this scenario. The very first approach, could be implement this scenario using interpreter pattern. This approach will be discussed in details. The Second approach was found to implement it was using only one class, which would contain one hash table, and which would be totally responsible for storing all the keys/sections and the rules defined. The Third approach, adopted, was sequential parsing, where all the keys were getting read one by one and was validating the same. Here rules means that for one key, the type of value it can have, its size, its occurrence (mandatory/optional/repetitiveness) etc.

First Approach

In the very first approach, the above scenario was parsed using interpreter pattern. During implementation, the classes were designed in the following manner: For each section there was one class which had a rule defined for them only and was stored in hash table, and the rule was, for each key in that section had its limitations in terms of its length, its type, whether the particular key is mandatory or optional. Similarly the classes were formed for each sections defined in the scenario. The general view can be seen as Figure 1 shown below. The detail design for the above scenario can be observed in Figure 2. Also the flow of control of the parser can be visualized in Figure 3.

Figure 1 shown below describes that there is an abstract class, which had one incomplete abstract method Interpret (). All other classes were extending this abstract class and each subclasses of this class had to implement Interpret method to match the next part of the input based on the current context. In object-oriented world, this is known as inheritance.

 Figure 1

 2

 invoke

Figure 2 shown below describes the class diagram for the above scenario. As told earlier it had an abstract section, which had one incomplete interpret () method. Along with this abstract class it had one abstract rule class, which was responsible to store the rules for a particular key in the memory. As it is clear from the above diagram that pattern section and rules classes were extending the abstract classes abstractSections and abstractRules respectively.
Figure 2

[image: image1.emf]Rules

keyValues(String strKey, keyRules key_obj)

sectionValues(String strKey, sctionsRules section_obj)

validateKey(String strKey, String strValue)

keyRules

String m_strType;

int m_nMaxValue;

int m_nMinValue;

String m_strMandatoryOptional

String m_strOccurence;

sectionsRules

String m_strMandatoryOptional;

String m_strOccurence;

String m_strKey

This class is common for all

the keys and the secitons.

this class defines the rules for a

particular key, i.e the type of key,

its max/min values, whether it is

optional, whether it can occur

multiple time or only once etc.

this class defines the rules for subsections

i.e whether the current section can have

another section? and if yes, then the name

of the section, whether it is mandatory or

not, and whether it can occur multiple time

or only once etc.

(

PatternSection

int m_pid;

String m_strType;

String m_strScope;

String m_strValue;

Pattern()

Interpret(Context)

AbstractSection

abstract Interpret(Context)

All the seciton will be

extending the AbstractSection

class in order to implement the

method Interpret()

abstractRules

keyValues(String strKey, keyRules key_obj)

sectionValues(String strKey, sctionsRules section_obj)

validateKey(String strKey, String strValue)

Figure 3 shown below describes the flow of control of the program. Initially it will check that whether the particular scenario, which needs to be parsed, is present in the directory or not. If present then it gives control to pattern section and the flow will be continued. The flow control shown below is self-explanatory.

Figure 3

Second Approach

The second approach was instead of using different classes for different sections, there was only one class where all the rules were defined in only one hash table. And the same hast tables was used to extract the rule object to validate the particular key. The idea was to create fewer objects in memory and to check the performance of the parser. All the figures shown above were valid for this implementation also.

Third Approach
The third approach adopted was to do sequential parsing, in the sense, parsed each key one by one and then validated. In this case, there was only one main class in the memory. This was the most difficult approach which was found among the three as lots of if and else blocks were there. This approach is not advisable at all and if this approach is used, then maintainability of the code will be very costly.
Results

Differences in terms of result and performance were found among all the approaches explained above. Please refer to the following table and the graph shown in Figure 4 and in Figure 5.

Figure 4

	Scenario Size
	Approach 1
	Approach 2
	Approach 3

	
	TIME (Seconds)
	TIME (Seconds)
	TIME (Seconds)

	100 KB
	3.0
	2.0
	1.0

	500 KB
	15.0
	10.0
	5.0

	1000 KB
	30.0
	20.0
	10.0

Figure 5

[image: image2.emf]0

5

10

15

20

25

30

35

100 KB 500 KB 1000 KB

SIZE OF SCENARIO

TIEM (SECONDS)

Approach 1 Approach 2 Approach 3

As the results shows that if an interpreter pattern is used then the amount of time taken was more than the amount of time taken for the approaches 2 and approaches 3. As it was told that approach 1 is nothing but implementation of the interpreter pattern. This is obvious because different classes were used for different pattern, and so there were different objects in the memory, hence it was taking more time. But using this approach, it was found that adding new rules in scenario was very easy and it maintains the object-oriented principals like data encapsulation, inheritance. Code reliability also increases if this approach is used. Approach 3 is not advisable because it is sequential and at end lots of confusion was there. Approach 2 is not advisable up to certain extends because if there are so many keys and section in the grammar exist, then hash tables size will be increased and it will use more memory and at the same time maintainability cost will be more.
Conclusion

An interpreter pattern can be used when there is a need of parsing a user defined languages and various output is dependent on the way user defines the languages. The interpreter pattern has the advantages that extension or revision of the grammar to be parsed is fairly easily once the general parsing and reduction tool is built. Addition of new rules (keys and section in our case) quite easily once the foundation is constructed. In other words, the interpreter pattern makes the grammar easy to implement and extend and adding news interpreters to a grammar is simple. On the other hand the interpreter pattern should not be used if grammar is complex (it’s involves object creation and hence performance degrade) and if efficiency is concern.

References

· Design patterns, Element of Reusable OO s/w by Erirc Gamma, Richards Helm, Raplh johnson, John Vlissides

· Design Pattern, JAVA COMPANION by James W. Cooper

Validate whether the proper file is present in the path or not

N

Y

Subsection defined in the rule

N

Y

N

Y

Y

N

Exit with proper message.

Section validation fails?

Key validation fails?

Validate all the keys

Pattern section found?

Interpret(context)

Initialize(context)

Start

Pattern

Interpret (context)

ApplnInfo

Interpret (context)

CondGroup

Interpret (context)

ActionInfo

Interpret (context)

Condition

Interpret (context)

Calendar

Interpret (context)

Abstract Section

Interpret (context)

Initialize(context)

client

