Service Hiding

Written by:
Eugene Wineblat,
Senior Developer of Network Security Team,

Apriorit Inc. http://www.apriorit.com

Content:

1. Introduction
2. List of services
2.1. services.exe

2.2. Signatures

2.3. Structure of SERVICE_RECORD

2.4. Life After The Windows Vista
3. Patching
3.1. Search of signatures
3.2. Service hiding
3.3. Correct restoration
4. Structure of the project files
5. References
1. Introduction
In this article we continue investigation in the field of hiding application in the system. This theme was started by Ivan Romanenko and Sergey Popenko in the article “Driver to Hide Processes and Files”. Our aim is to discover the ways of application hiding in the system for the wide audience. The approaches described can be used in the Corporate Security systems development – to hide system agents and prevent switching them off by users. Information can be also useful for those who research harmful software - to build the adequate answer for the threats.

This article will tell where Windows OS stores the services and how uses them. We’ll discuss how this knowledge can be applied to finding our custom service and hiding it.
So let’s start our research.
2. List of services
At the first step of my research I thought that if there were services then somewhere their manager had to be. And it discovered to be true – such manager is in the file named services.exe.
2.1. services.exe

The process services.exe deals with all operations associated with services, service manager – which is familiar to many developers by the ::OpenSCManager function, and obviously with the service storing too.
So my first task is to find where the service database is stored.

My analysis showed that we need ScInitDatabase function and it includes such assembler instructions:

ScInitDatabase proc near

xor eax, eax

push esi

mov g_uScTotalNumServiceRecs, eax

mov g_ImageDatabase, eax ; _IMAGE_RECORD ImageDatabase

mov g_pImageDatabase, eax ; Pointer to first _IMAGE_RECORD

mov g_ServiceDatabase, eax ; _SERVICE_RECORD ServiceDatabase

mov g_pServiceDatabase, eax ; Pointer to first _SERVICE_RECORD

call ?ScInitGroupDatabase@@YGXXZ ; ScInitGroupDatabase(void)

mov esi, ds:__imp__RtlInitializeResource@4 ; RtlInitializeResource(x)

push offset ?ScServiceRecordLock@@3VCServiceRecordLock@@A ; CServiceRecordLock ScServiceRecordLock

mov ?ResumeNumber@@3KA, 1 ; ulong ResumeNumber

call esi ; RtlInitializeResource(x) ; RtlInitializeResource(x)

push offset ?ScServiceListLock@@3VCServiceListLock@@A ; CServiceListLock ScServiceListLock

call esi ; RtlInitializeResource(x) ; RtlInitializeResource(x)

push offset ?ScGroupListLock@@3VCGroupListLock@@A ; CGroupListLock ScGroupListLock

call esi ; RtlInitializeResource(x) ; RtlInitializeResource(x)

call ?ScGenerateServiceDB@@YGHXZ ; ScGenerateServiceDB(void)

neg eax

sbb eax, eax

neg eax

pop esi

retn

ScInitDatabase endp

I marked out some lines with red, they are suspected to store the data we need – service database g_pServiceDatabase. On the basis of the places where ScCreateServiceRecord and ScGetNamedServiceRecord variables are used we can say that it is exactly what we are looking for – service database and the pointer to its beginning.

2.2. Signatures
Without second thought we take this method as a basis as it is called only once at the program start, and choose signature to search pointer to the beginning of the list of services in the process memory.

Let’s consider the first variant A3 9C A0 01 01 A3 98 A0 01 01 E8 B5 08 00 00, which is just the assembler code of the three mentioned lines:
mov g_ServiceDatabase, eax ; _SERVICE_RECORD ServiceDatabase

mov g_pServiceDatabase, eax ; Pointer to first _SERVICE_RECORD

call ?ScInitGroupDatabase@@YGXXZ ; ScInitGroupDatabase(void)

To use this signature we should guarantee that:

- All versions of services.exe have the same signature in the proper place
- All versions of services.exe have only one such signature
I developed the simple utility based on the code of FindSignature function (plServicesSiganture.cpp):

unsigned char g_ServicesDBSignature[] =

 { 0xA3, 0x9C, 0xA0, 0x01, 0x01, 0xA3, 0x98, 0xA0, 0x01, 0x01, 0xE8, 0xB5, 0x08, 0x00, 0x00 };

unsigned char g_ServicesDBSignatureMask[] =

 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };

int

FindSignature (char* pBaseAddr, unsigned long ulSectionSize, unsigned long *pulSignatureOffset)

{

 char* pFoundPos = 0;

 char* pCheckPos = 0;

 MASK_BUFFER bufMask = { (char*)g_ServicesDBSignature,

 (char*)g_ServicesDBSignatureMask,

 sizeof (g_ServicesDBSignature) / sizeof (g_ServicesDBSignature[0]) };

 // find first occurrence of signature
 BUFFER bufMemory = { pBaseAddr, ulSectionSize };

 if (PL_STATUS_SUCCESS != PlSearchSequence (&bufMask,

 &bufMemory,

 &pFoundPos))

 {

 return 0;

 }

 // find second occurrence of signature – exception situation
 bufMemory.pStart = pFoundPos + 1;

 bufMemory.nSize = ulSectionSize - (pFoundPos - pBaseAddr + 1);

 if (PL_STATUS_SUCCESS == PlSearchSequence (&bufMask,

 &bufMemory,

 &pCheckPos))

 {

 return 0;

 }

 *pulSignatureOffset = (unsigned long)(pFoundPos - pBaseAddr);

 return 1;

}
I started with services.exe for Windows XP and then checked all mentioned requirements for the signature for the rest of the services.exe versions for other OS versions. That gave me the final variant of the signature, which suited all versions and requirements:
68 XX XX XX XX C7 XX XX XX XX XX 01 00 00 00

where XX is any value that means that we should search the signature by mask.

This signature is pointing to the execution of the following commands from ScInitDatabase function:

push offset ?ScServiceRecordLock@@3VCServiceRecordLock@@A ; CServiceRecordLock ScServiceRecordLock

mov ?ResumeNumber@@3KA, 1 ; ulong ResumeNumber
2.3. Structure of SERVICE_RECORD
Service database it’s the list of structures SERVICE_RECORD, which contain necessary description of each service for the system. Here we won’t discuss the complete structure SERVICE_RECORD as far as it’s not necessary for us.

My further research discovered three fields:

Prev – pointer to the previous list element
Next – pointer to the next list element
ServiceName – pointer to the string with the service name
The offsets of these fields relative to the SERVICE_RECORD structure beginning are:
Prev – 0x00

Next – 0x04

ServiceName – 0x08
2.4. Life After The Windows Vista

Windows Vista release “changed the world” – and it affected services.exe also.
The search of the list beginning changed and so do the structure of SERVICE_RECORD. Now dereferencing should be applied to the pointer to the service list beginning (it must be the common improved protection of the pointers in the process memory) and also I had to look for the new offsets of Next, Prev and ServiceName fields.
Here are these offsets:

Prev – 0x00

Next – 0x60

ServiceName – 0x04

Changes in the logic of the database beginning search are reflected in the functions SearchForServicesDbOffset_EarlierVista and SearchForServicesDbOffset_Vista (in the file plServicesSignature.cpp).
3. Patching
Below we’ll discuss the difficulties of the practical implementation.

3.1 Search of the signatures
To search for the signatures we should look through the memory of the “services.exe” process and detect a signature. So we examine all memory allocated by this process using VirtualQueryEx and ReadProcessMemory functions:

 MEMORY_BASIC_INFORMATION mbi;

 if (::VirtualQueryEx (hProcess, 0, &mbi, sizeof(mbi)) != sizeof(mbi))

 throw std::exception ("Error on VirtualQueryEx");

 void* pAddr = mbi.AllocationBase;

 do

 {

 MEMORY_BASIC_INFORMATION mbi1;

 if (::VirtualQueryEx (hProcess, pAddr, &mbi1, sizeof(mbi1)) != sizeof(mbi1))

 throw std::exception ("Error on VirtualQueryEx");

 if (mbi1.RegionSize != 0)

 {

 std::vector< unsigned char > bufMemory (mbi1.RegionSize);

 SIZE_T nBytesRead = 0;

 if (::ReadProcessMemory (hProcess, pAddr, &bufMemory[0], mbi1.RegionSize, &nBytesRead))

 {

//Here you can search for your data
 }

 }

 else

 {

 throw std::exception ("No more process memory");

 }

 pAddr = (PBYTE)pAddr + mbi1.RegionSize;

 } while (true);

After that we find the beginning of the service list by the signature.

3.2. Service hiding
Now we should only find our record in the list and redefine the Next pointer of the previous record to the record which is next to our one, and correspondingly the Prev pointer of the next to our record should be redefined to the record which is previous to our one:
[image: image1.jpg]|
Rocord N | | | [Record N (Targot) Record No1

Frov 1 e Frov

Next fat Next - Next

Servioe Name Servioe Name Servioe Name

// find sevice by ServiceName
 PUCHAR pServiceRecord = 0;

 if (!LookupServicesDbRecordByName (hProcess, pServiceDb, pServicesContext, pwstrServiceName, &pServiceRecord))

 {

 false;

 }

 std::vector< unsigned char > buffer (pServicesContext->m_OffsetFncList.m_fncGetEstimatedSize ());

 if (!::ReadProcessMemory (hProcess, pServiceRecord, &buffer[0], pServicesContext->m_OffsetFncList.m_fncGetEstimatedSize (), 0))

 {

 throw std::exception ("Error on ReadProcessMemory");

 }

 // Get address of Next and Prev records
 PUCHAR pPrevServiceRecord = (unsigned char*)*(PULONG)pServicesContext->m_OffsetFncList.m_fncGetOffset_Prev (&buffer[0]);

 PUCHAR pNextServiceRecord = (unsigned char*)*(PULONG)pServicesContext->m_OffsetFncList.m_fncGetOffset_Next (&buffer[0]);

 if (pPrevServiceRecord)

 {
 // PrevRecord->Next = NextRecord

 ulPatchAddr = (ULONG)pNextServiceRecord;

 PUCHAR pPrevNextServiceRecord = (PUCHAR)pServicesContext->m_OffsetFncList.m_fncGetOffset_Next (pPrevServiceRecord);

 SIZE_T szWritten = 0;

 if (!::WriteProcessMemory (hProcess,

 pPrevNextServiceRecord,

 &ulPatchAddr,

 sizeof (ulPatchAddr),

 &szWritten))

 {

 throw std::exception ("Error on WriteProcessMemory");

 }

 }

 if (pNextServiceRecord)

 {

 // NextRecord->Prev = PrevRecord

 ulPatchAddr = (ULONG)pPrevServiceRecord;

 PUCHAR pNextPrevServiceRecord = (PUCHAR)pServicesContext->m_OffsetFncList.m_fncGetOffset_Prev (pNextServiceRecord);

 if (!::WriteProcessMemory (hProcess,

 pNextPrevServiceRecord,

 &ulPatchAddr,

 sizeof (ulPatchAddr),

 0))

 {

 throw std::exception ("Error on WriteProcessMemory");

 }

 }

After these manipulations our service disappears.
3.3 Correct restoration
Hiding is good but I should tell about restoration too to complete the story.
Why restore? To delete service correctly by means of corresponding DeleteService function.
My proposition is to create callback function that returns the address of the hided service in the memory of the “services.exe” process after the hiding. Then we will be able to easily restore the services sequence when we need it.
We should remember that the system is permanently changing and Prev and Next pointers of the hided record can not be the “live” records in the service list already.
That’s why while restoring we should make such steps:
- Search the record which corresponds to the Prev address; if there is such a record then add element to the list after the specified element (InsertAfter).
- If the record is not found then search the record by the corresponding Next address. If it is found then add element to the list before the specified element (InsertBefore).
- If the record is not found by Next pointer then simply add the service to the end of the service list (InsertAtTheEnd).
 std::vector< unsigned char > buffer (pServicesContext->m_OffsetFncList.m_fncGetEstimatedSize ());

 if (!::ReadProcessMemory (hProcess, pServiceRecord, &buffer[0], pServicesContext->m_OffsetFncList.m_fncGetEstimatedSize (), 0))

 {

 throw std::exception ("Error on ReadProcessMemory");

 }

 PUCHAR pPrevServiceRecord = (unsigned char*)*(PULONG)pServicesContext->m_OffsetFncList.m_fncGetOffset_Prev (&buffer[0]);

 if (pPrevServiceRecord)

 {

 bool bFound = LookupServicesDbRecordByAddr (hProcess, pServiceDb, pServicesContext, pPrevServiceRecord, &pPrevServiceRecord);

 if (bFound)

 {

 InsertAfterPreviousRecord (hProcess, pServicesContext, pServiceRecord, pPrevServiceRecord);

 return true;

 }

 }

 PUCHAR pNextServiceRecord = (unsigned char*)*(PULONG)pServicesContext->m_OffsetFncList.m_fncGetOffset_Next (&buffer[0]);

 if (pNextServiceRecord)

 {

 bool bFound = LookupServicesDbRecordByAddr (hProcess, pServiceDb, pServicesContext, pNextServiceRecord, &pNextServiceRecord);

 if (bFound)

 {

 InsertBeforeNextRecord (hProcess, pServicesContext, pServiceRecord, pNextServiceRecord);

 return true;

 }

 }

 bool bFound = LookupServicesDbRecordByEnd (hProcess, pServiceDb, pServicesContext, &pPrevServiceRecord);

 if (!bFound)

 {

 return false;

 }

 InsertAsLastRecord (hProcess, pServicesContext, pServiceRecord, pPrevServiceRecord);

 return true;

4. Structure of the project files
The source code of the usermode application which illustrates everything told here is in the archive attached.
Download sources http://www.apriorit.com/our-articles/service-hiding.html.
5. References
Jeffrey Richter, Christophe Nasarre. Windows via C/C++. Especially the chapter devoted to the Virtual memory research.

