How To Develop Your Own Boot Loader

Table of content
2Who may be interested

2What is Boot Loader

2Be ready to go deeper

2So what language you should know to develop Boot Loader

3What compiler you need

4How system boots

5Let’s code

5Program architecture

6Development environment

6BIOS interruptions and screen clearing

7«Mixed code»

7CString implementation

8CDisplay implementation

10Types.h implementation

11BootMain.cpp implementation

11StartPoint.asm implementation

12Let’s assemble everything

12Creation of COM file

13Assembly automation

13Testing and Demonstration

14How to test boot loader

14Testing with the virtual machine VmWare

14Creation of the virtual machine

15Working with Disk Explorer for NTFS

19Testing on the real hardware

20Debug

20Information Sources

21Conclusion

Who may be interested
Most of all I’ve written this article for those who have been always interested in the way the different things work. It is for those developers who usually create their applications in high-level languages such as C, C++ or Java, but faced with the necessity to develop something at low-level. We will consider low-level programming on the example of working at system loading.

We will describe what is going after you turn on a computer; how the system is loading. As the practical example we will consider how you can develop your own boot loader which is actually the first point of the system booting process.
What is Boot Loader
Boot loader is a program situated at the first sector of the hard drive; and it is the sector where the boot starts from. BIOS automatically reads all content of the first sector to the memory just after the power is turned on, and jump to it. The first sector is also called Master Boot Record. Actually it is not obligatory for the first sector of the hard drive to boot something. This name has been formed historically because developers used to boot their operating systems with such mechanism.
Be ready to go deeper
In this section I will tell about knowledge and tools you need to develop your own boot loader and also remind some useful information about system boot.

So what language you should know to develop Boot Loader
On the first stage on the computer work the control of hardware is performed mainly by means of BIOS functions known as interruptions. The implementation of interruptions is given only in Assembler – so it is great if you know it at least a little bit. But it’s not the necessary condition. Why? We will use the technology of “mixed code” where it is possible to combine high-level constructions with low-level commands. It makes our task a little simpler.
In this article the main development languages is C++. But if you have brilliant knowledge of C then it will be easy to learn required C++ elements. In general even the C knowledge will be enough but then you will have to modify the source code of the examples that I will descried here.
If you know Java or C# well unfortunately it won’t help for our task. The matter is that the code of Java and C# languages that is produced after compilation is intermediate. The special virtual machine is used to process it (Java Machine for Java, and .NET for C#) which transform intermediate code into processor instructions. After that transformation it can be executed. Such architecture makes it impossible to use mixed code technology – and we are going to use it to make our life easier, so Java and C# don’t work here.
So to develop the simple boot loader you need to know C or C++ and also it would be good if you know something about Assembler – language into which all high-level code is transformed it the end.
What compiler you need
To use mixed code technology you need at least two compilers: for Assembler and C/C++, and also the linker to join object files (.obj) into the one executable.
Now let’s talk about some special moments. There are two modes of processor functioning: real mode and safe mode. Real mode is 16-bit and has some limitations. Safe mode is 32-bit and is fully used in OS work. When it starts processor works in 16-bit mode. So to build the program and obtain executable file you will need the compiler and linker of Assembler for 16-bit mode. For C/C++ you will need only the compiler that can create object files for 16-bit mode.
The modern compilers are made for 32-bit applications only so we won’t able to use them.

 I tried a number of free and commercial compilers for 16-bit mode and choose Microsoft product. Compiler along with the linker for Assembler, C, C++ are included into the Microsoft Visual Studio 1.52 package and also can be downloaded from the official site of the company. Some details about compilers we need are given below.
ML 6.15 – Assembler compiler by Microsoft for 16-bit mode;

LINK 5.16 – the linker that can create .com files for 16-bit mode;

CL – С, С++ compiler for 16-bit mode.
You can also use some alternative variants:
DMC – free compile for Assembler, C, C++ for 16 and 32-bit mode by Digital Mars;

LINK – free linker for DMC compiler;

There are also some products by Borland:
BCC 3.5 – С, С++ compiler that can create files for 16-bit mode;

TASM - Assembler compiler for 16-bit mode;

TLINK – linker that can create .com files for 16-bit mode.
All code examples in this article were built with the Microsoft tools.
How system boots
In order to solve our task we should recall how the system is booting.
Let’s consider briefly how the system components are interacting when the system is booting (see Fig.1).

[image: image1.emf]BIOS

RAM

0000:7c00h

...

…

...

MBR

(Master Boot Record)

Partition

table

55 AAh

510b 2b

1 sector

HDD

0 sector 2 sector 3 sector 4 sector …

1

2

BIOSrefers to HDD device and

reads the first sector

Control is passed to the

first sector which has an

address 0000:7C00h

Fig.1 – “How it boots”

After the control has been passed to the address 0000:7C00, Master Boot Record (MBR) starts its work and triggers the Operating System boot. You can learn more about MBR structure for example here.
Let’s code
In the next sections we will be directly occupied with the low-level programming – we will develop our own boot loader.
Program architecture
Boot loader that we are developing is for the training only. Its tasks are just the following:

1) Correct loading to the memory by 0000:7C00 address.

2) Calling the BootMain function that is developed in the high-level language.
3) Show “”Hello, world…”, from low-level” message on the display.

Program architecture is described on the Fig.2 that is followed by the text description.

[image: image2.emf]+StrLen()

CString

+TextOut()

+ShowCursor()

+ClearScreen()

CDisplay

BootMain

«uses»

StartPoint

Fig.2. – Program architecture description
The first entity is StartPoint that is developed purely in Assembler as far as high-level languages don’t have the necessary instructions. It tells compiler what memory model should be used, and what address the loading to the RAM should be performed by after the reading from the disk. It also corrects processor registers and passes control to the BootMain that is written in high-level language.
Next entity– BootMain – is an analogue of main that is - in its turn - the main function where all program functioning is concentrated.
CDisplay and CString classes take care of functional part of the program and show message on the screen. As you can see from the Fig.1.2 CDisplay class uses CString class in its work.
Development environment
Here I use the standard development environment Microsoft Visual Studio 2005 or 2008. You can use any other tools but I made sure that these two with some settings made the compiling and work easy and handy.

First we should create the project of Makefile Project type where the main work will be performed (see Fig.3).
File->New\Project->General\Makefile Project
[image: image3.png]New Project

5 Visuel G-+ Visual Studio installed templates
atL
ar 2 Custom wiard [FJempty project
General
wrC
Smart Device My Templates
Test
Wing2 (Jseerch Onine Templates

Distributed Systems
Other Project Types
Test Projects

Aprojectfor usg n steralbuld sytem]

s [<Eter_nome>]

Location; [DiiprojectsiReposiorylapriorIT\ TrueForensicootisre|TFEBootSector v [(oowse...]

reate diectory for soltion

Fig.3 – Create the project of Makefile type
 BIOS interruptions and screen clearing
To show our message on the screen we should clear it first. We will use special BIOS interruption for this purpose.
BIOS proposes a number of interruptions for the work with computer hardware such as video adapter, keyboard, disk system. Each interruption has the following structure:

int
[number_of_interrupt];

where number_of_interrupt is the number of interruption
Each interruption has the certain number of parameters that should be set before calling it. The ah processor register is always responsible for the number of function for the current interruption, and the other registers are usually used for the other parameters of the current operation. Let’s see how the work of int 10h interruption is perforemed in Assembler. We will use the 00 function that changes the video mode and clears screen:
mov al, 02h
; setting the graphical mode 80x25(text)

mov ah, 00h
; code of function of changing video mode
int 10h

; call interruption
We will consider only those interruptions and functions that will be used in our application. We will need:
int 10h, function 00h – performs changing of video mode and clears screen;
int 10h, function 01h – sets the cursor type;

int 10h, function 13h – shows the string on the screen;

«Mixed code»

Compiler for С, С++ supports the inbuilt Assembler i.e. when writing code in igh-level language you can use also low level language. Assembler Instructions that are used in the high level code are also called asm insertions. They consist of the key word __asm and the block of the Assembler instructions in braces:

__asm

; key word that shows the beginning of the asm insertion
{

; block beginning

…
; some asm code
}

; end of the block
To demonstrate mixed code let’s use the previously mentioned Assembler code that performed the screen clearing and combine it with C++ code.

void ClearScreen()
{

__asm
{

mov al, 02h
; setting the graphical mode 80x25(text)
mov ah, 00h
; code of function of changing video mode
int 10h

; call interruption
}

}

CString implementation
 CString class is designed to work with strings. It includes Strlen() method that obtains pointer to the string as the parameter and returns the number of symbols in that string.

// CString.h

#ifndef __CSTRING__

#define __CSTRING__

#include "Types.h"

class CString

{

public:

 static byte Strlen(

 const char far* inStrSource

);

};

#endif // __CSTRING__
// CString.cpp
#include "CString.h"

byte CString::Strlen(

 const char far* inStrSource

)

{

 byte lenghtOfString = 0;

 while(*inStrSource++ != '\0')

 {

 ++lenghtOfString;

 }

 return lenghtOfString;

}

CDisplay implementation
CDisplay class is designed for the work with the screen. It includes several methods:

1)
TextOut() – it prints the string on the screen.

2)
ShowCursor() – it manages the cursor representation on the screen: show, hide.

3)
ClearScreen() – it changes the video mode and thus clears screen.

// CDisplay.h
#ifndef __CDISPLAY__

#define __CDISPLAY__

//

// colors for TextOut func

//

#define BLACK

0x0

#define BLUE

0x1

#define GREEN

0x2

#define CYAN

0x3

#define RED

0x4

#define MAGENTA

0x5

#define BROWN

0x6

#define GREY

0x7

#define DARK_GREY

0x8

#define LIGHT_BLUE

0x9

#define LIGHT_GREEN

0xA

#define LIGHT_CYAN

0xB

#define LIGHT_RED

 0xC

#define LIGHT_MAGENTA
0xD

#define LIGHT_BROWN

0xE

#define WHITE

0xF

#include "Types.h"

#include "CString.h"

class CDisplay

{

public:

 static void ClearScreen();

 static void TextOut(

 const char far* inStrSource,

 byte inX = 0,

 byte inY = 0,

 byte inBackgroundColor = BLACK,

 byte inTextColor = WHITE,

 bool inUpdateCursor = false

);

 static void ShowCursor(

 bool inMode

);

};

#endif // __CDISPLAY__
// CDisplay.cpp
#include "CDisplay.h"

void CDisplay::TextOut(

 const char far* inStrSource,

 byte inX,

 byte inY,

 byte inBackgroundColor,

 byte inTextColor,

 bool inUpdateCursor

)

{

 byte textAttribute = ((inTextColor) | (inBackgroundColor << 4));

 byte lengthOfString = CString::Strlen(inStrSource);

 __asm

 {

 push
bp

 mov

al, inUpdateCursor

 xor

bh, bh

 mov

bl, textAttribute

 xor

cx, cx

 mov

cl, lengthOfString

 mov

dh, inY

 mov

dl, inX

 mov es, word ptr[inStrSource + 2]

 mov bp, word ptr[inStrSource]

 mov

ah,
13h

 int

10h

 pop

bp

 }

}
void CDisplay::ClearScreen()

{

 __asm

 {

 mov al, 02h

 mov ah, 00h

 int 10h

 }

}

void CDisplay::ShowCursor(

 bool inMode

)

{

 byte flag = inMode ? 0 : 0x32;

 __asm

 {

 mov ch, flag

 mov cl, 0Ah

 mov ah, 01h

 int 10h

 }

}
Types.h implementation
Types.h is the header file that includes definitions of the data types and macros.

// Types.h
#ifndef __TYPES__

#define __TYPES__

typedef unsigned char byte;

typedef unsigned short word;

typedef unsigned long dword;

typedef char bool;

#define true 0x1

#define false 0x0

#endif // __TYPES__
BootMain.cpp implementation
BootMain() is the main function of the program that is the first entry point (analogue of main()). Main work is performed here.

// BootMain.cpp
#include "CDisplay.h"

#define HELLO_STR "\"Hello, world…\", from low-level..."
extern "C" void BootMain()

{

 CDisplay::ClearScreen();

 CDisplay::ShowCursor(false);

 CDisplay::TextOut(

 HELLO_STR,

 0,

 0,

 BLACK,

 WHITE,

 false

);
 return;

}
StartPoint.asm implementation
;--

.286

 ; CPU type

;--

.model TINY

 ; memory of model

;---------------------- EXTERNS -----------------------------

extrn

_BootMain:near
 ; prototype of C func
;--

;--

.code

org

07c00h

 ; for BootSector

main:

jmp short start
 ; go to main

nop

;----------------------- CODE SEGMENT -----------------------

start:

 cli

 mov ax,cs ; Setup segment registers

 mov ds,ax ; Make DS correct

 mov es,ax ; Make ES correct

 mov ss,ax ; Make SS correct

 mov bp,7c00h

 mov sp,7c00h ; Setup a stack

 sti

 ; start the program
 call _BootMain

 ret

 END main ; End of program
Let’s assemble everything
Creation of COM file
Now when the code is developed we need to transform it to the file for the 16-bit OS. Such files are .com files. We can start each of compilers (for Assembler and C, C++) from the command line, transmit necessary parameters to them and obtain several object files as the result. Next we start linker to transform all .obj files to the one executable file with .com extension. It is working way but it’s not very easy.

Let’s automate the process. In order to do it we create .bat file and put commands with necessary parameters there. Fig.4 represents the full process of application assembling.

[image: image4.emf]Asm.asm

c.cpp c.obj

Link5.6.3

MASM 6.5

VC1.52

Asm.obj

Boot.com

ML.EXE /AT /c asm.asm

CL.EXE /AT /G2 /Gs /Gx /c c.cpp

LINK.EXE /TINY asm.obj c.obj

Fig.4 – Process of program compilation
Build.bat
Let’s put compilers and linker to the project directory. In the same directory we create .bat file and fill it accordingly to the example (you can use any directory name instead of VC152 where compilers and linker are situated):
.\VC152\CL.EXE /AT /G2 /Gs /Gx /c /Zl *.cpp

.\VC152\ML.EXE /AT /c *.asm
.\VC152\LINK.EXE /T /NOD StartPoint.obj bootmain.obj cdisplay.obj cstring.obj

del *.obj
Assembly automation
As the final stage in this section we will describe the way how to turn Microsoft Visual Studio 2005, 2008 into the development environment with any compiler support. Go to the Project Properties:
Project->Properties->Configuration Properties\General->Configuration Type
Configuration Properties tab includes three items: General, Debugging, NMake. Go to NMake and set the path to the build.bat in the Build Command Line and Rebuild Command Line fields – Fig.5.

[image: image5.png]TFBBootSector Property Pages

Confiunations[Aetietoebug)] Pttom; [actvetwiz)] (Covawatenenager]

= Comman Proprts s

ranevork andReferences | | uid CommandLine [
& Confeuraton repeties Rebuld Al Command Lne oot

General Clean Command Line.

Debugaing Output

a
Conmon Langusge Rurtine Sgport o Conmon Lnguage Rutine suppert

Preprocessor Defitions
Include Search Path
Forced Incudes
assembly Search Path
Forced Using Assemblies

Build Command Line
Speciies the command line to run for the "Buid” command

Fig.5 –NMake project settings
If everything is correct then you can compile in the common way pressing F7 or Ctrl + F7. At that all attendant information will be shown in the Output window. The main advantage here is not only the assembly automation but also navigation thru the code errors if they happen.
Testing and Demonstration
This section will tell how to see the created boot loader in action, perform testing and debug.
How to test boot loader
You can test boot loader on the real hardware or using specially designed for such purposes virtual machine – VmWare. Testing on the real hardware gives you more confidence that it works while testing on the virtual machine makes you confident that it just can work. Surely we can say that VmWare is great method for testing and debug. We will consider both methods.

First of all we need a tool to write our boot loader to the virtual or physical disk. As far as I know there a number of free and commercial, console and GUI applications. I used Disk Explorer for NTFS 3.66 (version for FAT that is named Disk Explorer for FAT) for work in Windows and Norton Disk Editor 2002 for work in MS-DOS.
I will describe only Disk Explorer for NTFS 3.66 because it is the simplest method and suits our purposes the most.

Testing with the virtual machine VmWare
Creation of the virtual machine
We will need VmWare program version 5.0, 6.0 or higher. To test boot loader we will create the new virtual machine with minimal disk size for example 1 Gb. We format it for NTFS file system. Now we need to map the formatted hard drive to VmWare as the virtual drive. To do it:

File->Map or Disconnect Virtual Disks...
After that the window appears. There you should click Map button. In the next appeared window you should set the path to the disk. Now you can also chose the letter for the disk- see Fig.6.

[image: image6.png]Map Virtual Disk [
vitual dik

Select a virtualdisk il and associated volume to map ta a drive on your machine.
When mapped, this drive is avalable in Windows Explrer.

Vol Number Maimum Sze
1 1023.7 1
[Jopenfil in read-only mode (recommended)
Mapts
orive: 7 v

pen drive in Windows Explorer after mapping

Fig.6 – Parameters of virtual disk mapping
Don’t forget to uncheck the “Open file in read-only mode (recommended)” checkbox. When checked it indicates that the disk should be opened in read-only mode and prevent all recording attempts to avoid data corruption.

After that we can work with the disk of virtual machine as with the usual Windows logical disk. Now we should use Disk Explorer for NTFS 3.66 and record boot loader by the physical offset 0.
Working with Disk Explorer for NTFS
After program starts we go to our disk (File->Drive). In the window appeared we go to the Logical Drives section and chose disk with the specified letter (in my case it is Z) – see Fig.7.

[image: image7.png]=~ Physicaldives.
Tsthard dive 195 361 MB (HD128)
Tstpariion (NTFS) 41 345 MB
= @) 2nd partion (DS Extended LBA) 153 404 MB
Tstpariion (NTFS) 52 428 MB
= @) 2nd pattton (DS Extendis) 100 976 MB
@ 1stpariion (NTFS) 100 576 MB
= — Logicaldves
9 Hard dive 41 946 M8 (C)
 Hard dive 52 428 MB D)
9 Hard dive 100377 M8 (E:)
9 Hard dive 1 048MB 2)
—» Image fes
— Anangement fles
—+ Reote physical dives

Wivsgetle. 2 Renate

| [GF==d)

Fig.7 – choosing disk in Disk Explorer for NTFS
Now we use menu item View and As Hex command. It the appeared window we can see the information on the disk represented in the 16-bit view, divided by sectors and offsets. There are only 0s as soon as the disk is empty at the moment. You can see the first sector on the Fig.8.
[image: image8.png]Sector _ Offset Hex values Ascil values

00000000 000 (00 00 6000 00 00 60 00 00 00 60 00 00 00 00

0 431000 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
462000 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
4030 0000 00 0 00 00 00 0 00 00 00 00 00 00 00 00
404000 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00
4050 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
406000 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
46700000 00 00 00 00 00 0 00 00 00 00 00 00 00 00
4060 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00
4050 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
404000 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
X060 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00
¥0C0 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
4800 00 00 00 00 00 00 00 0 03 00 00 00 00 00 00 00
J0ED 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
¥0FO. 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00
+100 00 00 00 0 00 00 00 00 00 00 00 00 00 00 00 00
¥110. 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
¥120 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
¥130 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
¥140 00 00 00 0 00 00 00 0 00 00 00 00 00 00 00 00
¥150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
¥160 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
¥170 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
¥160 00 00 00 00 00 00 00 0 03 00 00 00 00 00 00 00
¥190 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
¥140 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
+1B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
¥iCO 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
+iD0 00 00 00 0 00 00 00 0 03 00 00 00 00 00 00 00
+IED 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00
a0 T

Fig.8 – Sector 1 of the disk
Now we should write our boot loader program to this first sector. We set the marker to position 00 as it is shown on the Fig.8. To copy boot loader we use Edit menu item, Paste from file command. In the opened window we specify the path to the file and click Open. After that the content of the first sector should change and look like it’s shown on the Fig.9 – if you haven’t changed anything in the example code, of course.

You should also write signature 55AAh by the 1FE offset from the sector beginning. If you don’t do it BIOS will check the last two bytes, won’t find the mentioned signature and will consider this sector as not the boot one and won’t read it to the memory.

To switch to the edit mode press F2 and write the necessary numbers –55AAh signature. To leave edit mode press Esc.
Now we need to confirm data writing.

[image: image9.png]Sector
00000000
0

Offset.
000
W10
20
030
040
050
060
7
080
090
A0
B0
+Co
+0D0
WIED
R0
00
W10
W20
PEY
w40
50
80
a7
80
Y
W40
180
Wco
¥1D0
HED
WIF0

Hex values

01 50 FA GC 9 GE 0B GE CO 6 00BD 00 7C 6F

00 7C FB EG 02 00 C3 00 C8 02 00 00 56 57 E6 67

00 64 00 8 96 00 83 C4 02

00 64 00 B8 1C 70 6C DAS2

€5 FD FF 9 03 00 €3 00

00 00 56 57 64 45 0C 25
ot 45 OE

D1ED 89 46 F8
88 48 FA FF 76
45 FC 55 84 45
8476 04 84 56
5D E9 00 00 5
B4.00 CD 10 E9
56 57 84 46 04
00 E9 03 00 88
01 CD10 E3 00
C6 46 FC 00 68
07 98 3 00 00
FF 84 46 FC E9
6C 6F 20 77 6F
©F 6 20 6C 6F
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

0
0
0
3
o
%
%2
o
3
i
o
2
7
o
o
o
o
o
o
o
o
o
o
o
0

FF
2
&

o
D
il
o
04
0
o
6C

%
FF
%

&
il
2
3
&
]
&
61

o
FF
%
04

0

4
o
%

%
o
5
%

2 6C 85

o
o
o
o
o
o
o
o
o
o
o
0

o
o
o
o
o
o
o
o
o
o
o
0

o
o
o
o
o
o
o
o
o
o
o
0

64 00 B4 OF BA 00 B
50 €8 1100 83 C4 0E
SF 5E C3C3 00 C8 08
00 D1 ED D1 E0 D1 ED

FF 00 88
E8 6E 00
8 5E FA 33
8 6E 04
C9.C308 02 00 00
cacsa
75 03 E9 06 00
FC 84 BE
CIC3ce s
06 83 45
00 80 46
cacsm

%
7%
o
o
o
o
o
o
o
o
o
o
o
0

%
3
o
o
o
o
o
o
o
o
o
o
o
0

2
6
o
o
o
o
o
o
o
o
o
o
o
0

4E F8 0B C1
83 C404 38
984 4E FC

B4
5%
s

FC
o
04
FC
2
o€
21
o
o
o
o
o
o
o
o
o
o
o
0

13
5
04

B1
o
o
o
il
2
o
o
o
o
o
o
o
o
o
o
o
o
0

10
B002
o0 00
B8 00
0484
56 57
2 84
E9E3
65 6C
6672
0 00
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 00
55 A

Ascil values
heHARURARPS. ||
o T Ve
RN R
i 8. }HBRPW L
Asan. . n. . _CREH
VW % CaCaCa
Ca%Fulf. %a. <Nu. b
€Fuav. v un £0 €

FolUF. 2t w3 /N

fev. Y. RF.cn.rlH

To o _CHTH . vw

SHERM

=" uwe
H..82. EFoftnes. r
Hodo . _CATH. .. v
KFo. <" TRELEFL 4
I= u . BFe ur
ARFei. . _ W, "Hel
lo world fr

om law-level

UE

Fig.9 – Boot Sector appearance
To apply writing we go to Tools->Options. Window will appear; we go to the Mode item and chose the method of writing - Virtual Write and click Write button – Fig.10.
[image: image10.png]Options

Mode:

 Readorly

& Vitual wite

X

Clear Wite:
 Diest read/wite

No deta villbe modied

Modications are alowed, but wilbe stored in memory.
They can be flished ta the dive before exing.

Madifications wil be wiiten to the dive.

Fig.10 – Choosing writing method in Disk Explorer for NTFS
A great number of routine actions are finished at last and now you can see what we have been developing from the very beginning of this article. Let’s return to the VwWare to disconnect the virtual disk (File->Map or Disconnect Virtual Disks… and click Disconnect).

Let’s execute the virtual machine. We can see now how from the some depth, from the kingdom of machine codes and electrics the familiar string appears ““Hello, world…”, from low-level…” – see Fig.11.
[image: image11.png]“Hello world.

from low-level!

Fig.11 – “Hello world…”
Testing on the real hardware
Testing on the real hardware is almost the same as on the virtual machine except the fact that if something doesn’t work you will need much more time to repair it than to create the new virtual machine. To test boot loader without the threat of existent data corruption (everything can happen), I propose to use flash drive, but first you should reboot your PC, enter BIOS and check if it supports boot from the flash drive. If it does than everything is ok. If it does not than you have to limit your testing to virtual machine test only.
The writing of boot loader to the flash disk in Disk Explorer for NTFS 3.66 is the same to the process for virtual machine. You just should choose the hard drive itself instead of its logical section to perform writing by the correct offset – see Fig.12.

[image: image12.png]Availbie dives:
=~ Physicaldives.
st had cive 195 361 ME (HD128)
15t paton (NTFS) 41 345 M
= @) 2nd pariion (D0S Estended LBA) 153 404 MB
15t paton (NTFS) 52 428 M
2nd partiion (D0S Extended) 100 576 MB
@ 1stpariion (NTFS) 100 576 MB
i hard dive 128 MB (HD123)
@ 15t patiion [FAT32) 127 MB
= — Logicaldves.
9 Hord dive 41 346 ME (C)
9 Horddive 52 428 MB (D)
9 Hord dive 100 977 MB (£
<5 Remavatle dive 128 MB (H)
) Hord dive 1 048 MB 2)
—» Image fes
— Anangement fles
—+ Reote physical dives

Wivsgetle. 2 Renate

3 Beboad |

Fig.12 – Choosing physical disk as the device
Debug
If something went wrong – and it usually happens – you need some tools to debug your boot loader. I should say at once that it is very complicated, tiring and time-eating process. You will have to grasp in the Assembler machine codes – so good knowledge of this language is required. Any way I give a list of tools for this purpose:
TD (Turbo Debugger) – great debugger for 16-bit real mode by Borland.

CodeView – good debugger for 16-bit mode by Microsoft.
D86 – good debugger for 16-bit real mode developed by Eric Isaacson – honored veteran of development for Intel processor in Assembler.

Bocsh – program-emulator of virtual machine that includes debugger of machine commands.

Information Sources
“Assembly Language for Intel-Based Computers” by Kip R. Irvine is the great book that gives good knowledge of inner structure of the computer and development in Assembler. You ca also find information about installation, configuration and work with the MASM 6.15 compiler.

This link will guide you to the BIOS interruption list:

http://en.wikipedia.org/wiki/BIOS_interrupt_call

Conclusion
In this article we have considered what is boot loader, how BIOS works, and how system components interact when system boots. Practical part gave the information about how to develop your own simple boot loader. We demonstrated the mixed code technology and process of automation of assembly with Microsoft Visual Studio 2005, 2008.
Of course it is just a small piece comparing with the huge theme of low-level programming, but if you get interested of this article – it’s great.
2

_1305553752.vsd
+StrLen()

CString

+TextOut()
+ShowCursor()
+ClearScreen()

CDisplay

StartPoint

BootMain

«uses»

_1305553754.vsd
Drag the side handles to change the width of the text block.

Asm.asm

Asm.obj

c.cpp

c.obj

Link5.6.3

MASM 6.5

VC1.52

Boot.com

ML.EXE /AT /c asm.asm

CL.EXE /AT /G2 /Gs /Gx /c c.cpp

LINK.EXE /TINY asm.obj c.obj

_1305553751.vsd
Text

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

BIOS

Control is passed to the first sector which has an address 0000:7C00h

BIOS refers to HDD device and reads the first sector

1

2

RAM

0000:7c00h

...

…

...

1 sector

HDD

0 sector

2 sector

3 sector

4 sector

…

MBR
(Master Boot Record)

Partition table

55 AAh

510b

2b

