Memory Leaks and Its Prevention in Java Application using Rational Purify®
By Dr. Sanjay Gupta
Abstract: In this paper we have discussed about the use of Rational Purify
 (an automated debugging and software testing tool that detects memory leaks) in our application which was developed with J2EE technology. The application was tested with the Purify and the results obtained were analyzed to fix the memory leaks. A brief discussion about the process for analysis through Purify is also discussed.

In any programming language, application level memory management problems resolve around the freeing of memory. These problems fall into two categories first premature deallocation and second incomplete deallocation (memory leaks). In C and C++ the term ‘memory leak’ refers to a section of allocated memory that is no longer accessible to the program because all reference to it has been discarded. Memory leaks slow program execution by increasing paging, and can ultimately cause programs to run out of memory. Memory leaks are more difficult to detect. In addition, memory leaks rarely produce directly observable errors, but instead cumulatively degrade overall performance over time.
 When memory is freed prematurely, other fatal memory access errors can result. Complicated memory ownership protocols are often required to administer dynamic memory to avoid memory access violations. Incorrectly coded boundary cases can lurk in otherwise stable code for years.
 Both memory leaks and access errors are easy to introduce into a program but hard to eliminate. Without facilities for detecting memory access errors, it is risky for programmers to attempt to reclaim leaked memory aggressively because that may introduce freed-memory access errors with unpredictable results [1].
In languages like C/C++ all memory management is handled by the programmer. On the other hand in Java, the Java runtime and language together entirely eliminate the problems of corrupted pointers and code-level memory leaks through a mechanism known as garbage collection. This, the immunity to the memory leaks is one of the Java’s biggest selling point. But, there is always a potential problem if something does everything for us and we do not really know how it does it, or what it does for us. In fact, Java garbage collection is not perfect, and the better we understand about its working mechanism, the better we will be able to build larger, more scalable application [2].
Contrary to this popular belief that java is perfectly served by an automatic garbage collection system that removes all the obsolete memory left behind during the program execution, memory management is still important and is a point of consideration in Java programming. In this article we discuss the causes of Java memory leaks and its prevention.
Before we go in details, let us discuss on how garbage collection actually works. The job
of the garbage collector is to find out those objects that are no longer needed by an application and to remove them when they can no longer be referenced. The basic tracing algorithm used by Garbage collector is known as “mark and sweep”. In the mark phase, the garbage collector parses the tree of references and marks the reachable
 nodes (objects). In the second phase it frees the unmarked objects. The memory resources used by these objects can be returned to the Java Virtual Machine (JVM) when these objects are deleted.

So it is true that Java code does not require the programmer to be responsible for memory management cleanup, and that it automatically garbage collects unused objects. However, the key point to remember is that an object is only counted as being unused when it is no longer referenced. Figure 1 explains this concept.

Fig. 1 illustrates two classes that have different lifetimes during the execution of a Java application. Class A is instantiated first and exist for a long time or for the entire life time of the program. Suppose at any point, class B is created, and class A adds a reference to this newly created class. Now let’s Suppose class B is some user interface widget that is displayed and eventually dismissed by the user. Even though class B is no longer needed, if the reference that class A has to class B is not cleared, class B will continue to exist and to take up memory space even after the next garbage collection cycle is executed [3].
When are memory leaks a concern?

If the program is getting a java.lang.OutOfMemory error after executing for a while, a memory leak is certainly a strong suspect. Beyond this case, when should memory leaks become a concern? From a good Java programmer point of view, all memory leaks to be investigated and corrected.

Java memory leaks are not dangerous as that occurs in other language like C++ where memory is lost and never return to the operating system. In case of Java applications, we have unneeded objects clinging to memory resources that have been given to the JVM by operating system. So theoretically, once the Java application and its JVM have been closed, all allocated memory will be returned to the operating system [3].
To see if a Java application running on a window platform is leaking memory and eventually eliminating a memory leak, we need better tools and task monitoring utility programs.
Some potential memory related pitfalls identified in Java are as follows [2]:
· Adding objects to collections or arrays and forgetting about them.

· Resetting the reference to an object on the next use. If the routine in which the reference is reset is not called, the objects stay in memory and will not be garbage collected.

· Changing the state to an object when there is still a reference to the old state.

· Having a reference that is pinned by a long running thread. Even if you set the object reference to NULL, it will not be garbage collected until the thread terminates.

· Using system resources that are not freed up. For example, it is a little known fact that the Abstract Windowing Toolkit (AWT) for Sun Java will not be cleaned by the Garbage Collector. It requires a call to the method dispose () in order to free the system resources.
In the next section, we will show how we detected and removed memory leaks using RationalPurify debugger from Rational to give us some idea of how this tool can be deployed and the process required to successfully remove a memory leak. Even with the powerful tools and memory snapshots that Rational purify provides, the investigation turned out to be a tedious and iterative process that involved first determining the cause of a giving memory leak and then making code changes and verifying the results.
Rational purify has several options to control what information is actually recorded during a debugging session. After some experimentation, we decided that the most efficient way to get the required information about the memory leak was to concentrate on the captured heap data. Rational purify provides a view that shows the amount of heap memory in use over time as the Java application is running (Figure 2). Purify GUI also provides a toolbar buttons [image: image1.png]

 (Garbage Collect) and [image: image2.png]

 (Snapshot memory profiling data) to force the JVM to perform garbage collection when desired and to record the data at a particular point respectively . This capability turned out to be very useful when trying to see if a given instance of class would be garbage collected when it was no longer needed by the Java application. The amount of heap storage, in a typical case, that is in use over the time is shown in the Figure 2.
[image: image3.png][Data Browser:LCMoni
< Fle Edt View Setings Window Help

rdetailsclose3.pmy (Snapshot)]

1 L e O W o et 2 g | Bl
|
E8meee | Memov | cotGuepn] Functon it Viw] Objet it View]
8 Snapshol @723/
e ee
ke
w00k
200k
a0k
sam0sM G443
e e 2B Mo difsroe et 191218
Showlesstine Showenienin | ok mem usoge 4347410 Gatboge Colect 41
T — =

Status: Srapshot_ [Elapsed Time: 00:11:41
Ready NOM

start| # Tomeat 32 [Rational Puity - [Dat...| [)dif2oc - Mictosoft Word |) diff.dac - Microsaft Word PG 923M

Figure 2: Memory profile data for a typical application

In the Heap Usage Chart, the blue portion indicates the amount of the heap space that has been allocated for the particular screen. After we started running our Java application and it reached a stable point, we forced the garbage collector to run, which is indicated by the sudden drop in the blue curve. Red dots on the diagram of memory in use (Figure 2) indicate the garbage collection. Next we opened and closed the particular screen and invoked the garbage collector followed by capturing Snapshot memory profile data. The fact that the level blue area after the checkpoint is higher than the level blue area before the checkpoint intimate us that a memory leak is likely. We calculated the amount of memory leak by looking the difference value of memory at Y axis between third Snapshot point and the second Snapshot point. We have taken this approach because when we first time invoke the application which is a combination of various screens and the number of components on the screen, First time they will be created and lie on the heap. At the time of closing the screens the components will go back to the component cache (is a java class which has a number of required frequently used components) and screens will go back to the screen cache (A java class which will have some GUI properties of the screen) , now second time when the application was again invoked, the objects of the various components will not be created from the base, but it will directly come from the component cache and hence the comparision between 3rd and 2nd snapshot gives us the right information about the memory leaks. This difference was analyzed to get approximate idea about the amount of memory leaks in the application.
To get the exact information at method level, which is responsible for the memory leak, the tool “Compare Runs” was used in order to compare the data from the two snapshots (3rd snapshot- 2nd snapshot). The results were saved as pmy and also as txt files. The txt file was opened in Microsoft Excel sheet and the data were filtered to remove the memory occupied by the swings components or by garbage collector.

The resulting call graph of the run will lead us directly to the memory leak. A typical Compare run is shown in Figure 3.

 [image: image4.png][Data Browser:LCMonitordetailsditf. pmy (Diff)]
< Fle Edt View Setings Window Help

HEIER
RIEIET
=(8| S(Ry] ef] 2E] B Blol =ls] AR 28] 2] @ elle] =] =
¥t
50 pvaee CallGraph | Function List View |
O Dif @07/23/02185
o e T v] e EeripEA TS E‘:Evemmsmmmm Erenpsrvead
o EventisptonTneas
—
B zeem —— — b [Hocaoncrarge: 5]
KT Visble: 877538 Highlhted: 5/2391
ety

java awt EvertDispatchThread$1 <inib(java awt EventDispatchT hread] fjava awt EventDispatchT hreads1]
Rstart| B Tomeai 32 I3 Rational Purity - [Dat.__| B)dif2dac - Micrasolt Word

[T
BBE 321 M

Figure 3: Memory Call Graph from the “Compare Runs” measurement
Figure 3 shows a Memory call graph which displays the call chains of methods during the run. In this figure we have shown only methods with significant memory usage. Other methods can be added to the report by extending the view. The highlighted chain of calls is pointing to the method that uses most of the memory during the run (highlighted with blue color). This method is the first candidate for detailed analysis.
Figure 4 shows a close look at the method list of the compared runs confirms the obvious leak. The compare run tool will display only the memory used in between two snapshots.
[image: image5.png]MEIE
<% Ele Edt View Setings Window Help 18] x]

CIEREDEE R R R R I\
vt
W CallGraph Functon List View |
Dif @ 07723002185 Mothod bytes 5
Method gl | cane Moot cise E
(Diff)
T e R K v sving AbsiacciontareyT e
ottt cor | 2251|1682 0jovas swing AbsaciciontéryT abe
Btstaci ciontArayTate oo = 0jovas swing AbsaciciontéryT abe
BbotacionSAteyT ol gk o Ta 0jovas swing AbsaciciontéryT abe
BbstacilonSAteyT sl gon A 0jovas swing AbsaciciontéryT abe
Bostac oAt e ey | 5518 4289 0ovas swing AbsaciciontényT e
tstaci ciontArayTatl o 3 50| v g AbstacAcion ey b
Attt ctonséreyT sl e | 2 0 ovas swing AbsaciciontérT b
Bostacicton > P . 0jovar sving Aosacticon
Bostaccton k> W 1m 0ovar sving Aosacticon
Bbstactcton sadFroperChon w© 0 v sving Absacticon
Bostacicton FcpeChonge | 483 %9 0 ovas sving Aosacticion
Bbstacicton geate o 0jovar sving Aosacticon
Btstacicton tEnabled i 1 0ovas sving Aostacticon
Bbstacicton sk w1 72 v sving Absacticton
Bbstaciction soEnabled A 720 v svin Absacticon
AbstschctonPropenyCharge . . 0 jovas swing AbstaccionProperChengel s OnedeakPeence
AbstscthctonPropenyChange . . 0jovar swing AbstactAcionPropetyChangel ent
AbstacthctonPropenyChange . ‘ 0jova swing AbstactcionProperChangel ent
BbstacBorder o, w e 0 jovas swing bt AbctocBotder
botacBordel LT oRigh 7w 0 jovas swing bt AetocBorder
BostacBatont]. > e s 0ovar swing Aottt
Bbstacutont fovuekost b s 0ovar swing Attt
BostacBtontccerstietbss 7w 0jovas swing AbsacButon§ccessbAbstacButon
BostacButonSBtorActonFo f . 0jova swing AbsacButon§BlonAcionProperChangel enct
BostacutonButorChongell | 1797|1281 0jovar swing AbsecButon§BulonChangel tener
BostacButonSBtonChangel @ o 0jovar swing AbsecButon§BuonChangel erer.
BostacutontFowadciore. | 1797|1281 0jova swing AbsactButonFotwardActinE vt
BotacutontFowadciort | 1737|1281 0jovas swing AbsactButonFomardActon v
BostacButonSFormadciort f 3 0jovas swing AbsactButonFowardActonEverts
BostacutontFowadientve. | 1797|1281 0jovar swing AbsacButonFomardicnE vents
BostacutontFowadientve | 1737|1281 0jovar swing AbsecButonFomardicnE vents
BostacButon§ForwadionE ve W s 0jovar swing AsacButonFomardicnE vents
BbstacButon > e 0ovas swing Absacton -
« | »
I —
Wisble: 7538/7538 [Roat T

Ready

Sstan| f Tomoa 32 [Rational Purity - Dat... |)iz doc - Micissot Ward

Figure 4: method list of the compared runs
The value of the column entitled “Method bytes allocated (diff)” were added together to get the overall picture of the memory leak in a particular screen. To our surprise many times we got the sum of all the memory leaks in column “Method byte allocated (diff)” as a negative number. This result is still unclear to us and needs further investigation. All the screens were analyzed through Purify and on the basis of the results, we have made various modification in our application.
Following changes were made and the application was again tested by Purify. To the great satisfaction, I am happy to report that the amount of memory leak was reduced to nearly 90-95 % .
Corrections made in the application
1. Removed all listeners from the destroy() method of the particular screen class.

2. Nullifying all the components, events, variables, renderes used in the screen in the destroy method of that screen class.

3. Removing all the creation of new instance variables at the class level.
4. Adding a method in the event classes which nullifies all the variables/ data objects/ data Transfer Object used in the event and calling them at the time of window close before calling destroy() method.
5. Avoided using too many JPanels instead we can reuse the already created JPanel by changing its properties if needed.
6. Used the dispose() method in the destroy() of the screen classes. It Releases all of the native screen resources used by the Window, its
subcomponents, and all of its owned children.
Server side information for memory leaks was observed using Task Manager. With
Purify, it is possible to monitor memory leaks in only one JVM.
"Out of memory exception" has not been observed at server side at any time
during the course of testing. Max memory consumption goes upto 23 MB(approx) (JVM
Size - 80MB) after that it comes down becuase of GC. (The observation is over a
period of 3 hrs continuous testing on the application involving invocation of
various screens multiple times). Also, as per the design of the application, chance for memory lekas in server side is less as all the classes doesn't have any instance variables.
Conclusion:
Finding the cause of a memory leak can be a tedious process. One needs to use a debugging tool for this purpose. We have used Rational Purify to detect the memory leaks in our application. Once the tool and the analysis process were familiar, we were able to fix the memory leaks in the application. In addition to this, the tool has also given insight about the good coding practice to eliminate the memory leaks in future projects.

About the author

Dr. Sanjay Gupta received a Ph.D in Metallurgical Engineering and Materials Science from Indian Institute of Technologies, Bombay, India and worked as a Research Associate for four years at Department of Physics, Indian Institute of Technology, India. He is presently working as a Senior Training Executive in Talent Transformation, Wipro Technologies, India. He is Sun Certified Java programmer. He has published 10 research papers in renowned international journals like Physical Review B, Solid State Communications, Physica C, Superconductors Science and Technology, Modern Physics Letter B and Journal of Physics: Condense Matters. He has also presented his research findings in more than fifteen International and National conferences. His current areas of research, study and knowledge dissemination are Java, Swings , J2EE Technology, tools like Rational Purify, Rational Pure Coverage, WinRunner and Magnetic Materials and High Temperature Superconductivity. He has been teaching Java since 2000. You can contact Dr. Sanjay at sanjay.guptha@wipro.com .
References:
1. “Develop fast, Reliable Code with Rational Purify plus” Rational Software White paper.

2. “Memory Profiling in Java” by Goran Begic, Rational Software White paper.
3. “Handling memory leaks in Java programs” by Jim Patric.

Time

Class B

Class A

� Rational Purify® is an automated debugging and software tool that detects memory leaks, access errors and system API errors. Rational Purify inserts additional checking instructions directly into the code produced by existing compilers. These instructions check every memory read and write performed by the program under test and detect several types of access errors, such as reading uninitialized memory or writing to free memory.

� Java does not allow applications to contain pointers to physical memory. When a Java application needs to allocate an object in the memory, the JVM returns a reference to the allocated memory area. At the same time the JVM updates a direct graph to the objects allocated in memory. The objects on the graph are commonly referred to as “nodes” and the references are known as “edges”. Objects on the heap can have one of the three following states- reachable, resurrectable, and unreachable. Reachable objects are visible to the collector; they are on the direct graph and the garbage collector will not attempt to clean it. Resurrectable objects are not visible on the graphof nodes and edges, but they may become reachable after the garbage collector executes the finalize() method on some other objects. Finally, unreachable objects are the first candidates to be garbage-collected [2].

