Measuring Client Satisfaction Using Quality in Use

Ramesh Ramani

“Quality is hard to define, impossible to measure, easy to recognize”

-Kitchenham (1989)

Need for quality

There are increasing expectations for quality, both in the consumer and professional markets. It is no longer sufficient to just deliver products which have technical excellence. products also need to be easy to use and to fit in with the work practices and activities of the consumer and professional user. How is this quality objective to be achieved? Traditional approaches to quality put emphasis on meeting the specified requirements which are primarily functional. So there is a clear need for a practical way in understand the need of customer and to measure the satisfaction of the customer.
What is software quality?

The word "Quality" has various meanings; every individual has a different requirement.
For a test engineer-no defects is quality. For a end user easy to use means quality etc.
[image: image1.png]< Adoptableto
Good my specific
Performance need

The definition given by the ISO/IEC 8402 standard is:

"The totality of features and characteristics of a product or a service that bear on its ability to satisfy stated or implied needs". Software quality can not be specified only as software without error. The software quality specification must be more accurate and detailed. The formalization of the software quality can be done using a quality model.

Quality model

In 1977, McCALL and his colleagues proposed a quality model to specify software quality. This model is based on three uses of a software product:

[image: image2.png]Maintainabity Y proguct Produst
Flexibilty revisian ransition
Tectabity

Produst operations

Cortectness Reliaitty
Effiency _Intearty
U aitty

Poatitly
Reusabilty
Interoperabity

The McCall quality model: one of the first quality models widely recognized
The McCall quality model is organized around three types of Quality Characteristics:

· Factors (To specify): They describe the external view of the software, as viewed by the users.

· Criteria (To build): They describe the internal view of the software, as seen by the developer.

· Metrics (To control): They are defined and used to provide a scale and method for measurement.

Since then, various quality models have been defined, adopted and enhanced over the years for example those proposed by Boehm or Forse.

The need for one recognized standard quality model became more and more urgent. The ISO/IEC 9126 standard is the result of a consensus for a software quality model. As with McCall's this is also based on three levels:

· Characteristics (Functionality, Reliability, Usability, Efficiency, Maintainability, Portability);

· Sub-characteristics;

· Metrics.

Each characteristic is refined to a set of sub-characteristics and each sub-characteristic is evaluated by a set of metrics. Some metrics are common to several sub-characteristics.

Characters for different software’s
Each type of software has its own quality requirements. For example, if we consider:

[image: image3.png]reragemert e
ey

Socking of ariles

o arartothe
Slpplers

o dsbotes
pece=d

l vt charavtsristics

[Embecided softvars
s ety

a3 zeqistion

ranmission of dam
Py

Funchionmaity

Relabiliy

Uzsbity.

Ericimn

[of “Yoj +¥] ~}

COe0ee

@ Relevant characteristio

Examples of selected characteristics for two software profiles
It is not easy to translate a user need (informal quality requirements) into a selection of quality characteristics (formal specification of the software quality as defined in ISO/IEC 9126), which can be used as the "Quality Target" for both IT product evaluation processes and IT development processes.
ISO 9126 quality model

The ISO/IEC 9126 quality model describes a three-part model for software product quality:

1. Internal quality, which is measured by the static properties of the code, typically by inspection (such as path length)

2. External quality, which is measured by the dynamic properties of the code when executed (such as response time)

3. Quality in use, which is measured by the extent to which the software meets the needs of the user in the working environment (such as productivity).

[image: image4.emf]
Relationship between internal quality, external quality and quality in use
External quality is a result of the combined behavior of the software and the computer system, while quality in use is the effectiveness, productivity and satisfaction of the user when carrying out representative tasks in a realistic working environment (Bevan, 1995a; 1995b). External measures can be used to validate the internal quality of the software. Quality in use measures the degree of excellence, and can be used to validate the extent to which the software meets user needs. Appropriate internal attributes of the software are a pre-requisite for achieving the required external behavior, and appropriate external behavior is a pre-requisite for achieving quality in use
Usage of the model
ISO 9126 Quality Life Cycle
[image: image5.emf]
Approaches to software product quality
Software quality can be measured internally (by static measures of the code), or externally (by measuring the behavior of the code when executed).
For example, reliability can be measured externally by observing the number of failures in a given period of execution time during a trial of the software, and internally by inspecting the detailed specifications and source code to assess the level of fault tolerance. The objective is for the product to have the required effect in a particular context of use.
Quality in use is the user’s view of quality. External properties (such as suitability, accuracy, fault tolerance or time behavior) will influence the observed quality in use. A failure in quality in use (e.g. the user cannot complete the task) could be traced to external quality (e.g. suitability or operability) and the associated internal attributes which have to be changed. Achieving quality in use is thus dependent on meeting criteria for external measures of the behavior of the software, which in turn is dependent on achieving related criteria for the associated internal measures.
Measures are normally required at all three levels, as meeting criteria for internal measures is not usually sufficient to ensure achievement of criteria for external measures, and meeting criteria for external measures is not usually sufficient to ensure achieving criteria for quality in use.
Quality in use metrics

Quality in use is the user’s view of the quality of a system containing software, and is measured in terms of the result of using the software, rather than properties of the software itself. Quality in use is the combined effect of the software quality characteristics for the user.

This broad view of quality has traditionally been the province of ergonomics, which is concerned with the factors in the physical and social environment which influence the extent to which people can achieve their goals. All these elements of the “work system” determine how people behave and whether they are successful in their tasks. The output of the work system can be measured as effectiveness, productivity, and satisfaction of the users
Characters of ISO9126
[image: image6.png]are the reguired
finctions avalable in
the sotvare?

Howeasy s to transfer
the sotware to ancther
environment?

Howreliable is the
Sotware?

Is the software
easytouse?

Howeasy isto
modity the softvere?

Howeffiient isthe
sotware?

The six quality characteristics of software
The sub characteristics adopted by ISO/IEC 9126 - 1991, are the following:

	Characteristics
	Subcharacteristics
	Definitions

	Functionality
	Suitability
	Attributes of software that bear on the presence and appropriateness of a set of functions for specified tasks.

	
	Accurateness
	Attributes of software that bear on the provision of right or agreed results or effects.

	
	Interoperability
	Attributes of software that bear on its ability to interact with specified systems.

	
	Compliance
	Attributes of software that make the software adhere to application related standards or conventions or regulations in laws and similar prescriptions.

	
	Security
	Attributes of software that bear on its ability to prevent unauthorized access, whether accidental or deliberate, to programs or data.

	Reliability
	Maturity
	Attributes of software that bear on the frequency of failure by faults in the software.

	
	Fault tolerance
	Attributes of software that bear on its ability to maintain a specified level of performance in case of software faults or of infringement of its specified interface.

	
	Recoverability
	Attributes of software that bear on the capability to re-establish its level of performance and recover the data directly affected in case of a failure and on the time and effort needed for it.

	Usability
	Understandability
	Attributes of software that bear on the users’ effort for recognizing the logical concept and its applicability.

	
	Learnability
	Attributes of software that bear on the users’effort for learning its application.

	
	Operability
	Attributes of software that bear on the users’effort for operation and operation control.

	Efficiency
	Time behaviour
	Attributes of software that bear on response and processing times and on throughput rates in performances its function.

	
	Resource behavior
	Attributes of software that bear on the amount of resource used and the duration of such use in performing its function.

	Maintainability
	Analyzability
	Attributes of software that bear on the effort needed for diagnosis of deficiencies or causes of failures, or for identification of parts to be modified.

	
	Changeability
	Attributes of software that bear on the effort needed for modification, fault removal or for environmental change.

	
	Stability
	Attributes of software that bear on the risk of unexpected effect of modifications.

	
	Testability
	Attributes of software that bear on the effort needed for validating the modified software.

	Portability
	Adaptability
	Attributes of software that bear on the opportunity for its adaptation to different specified environments without applying other actions or means than those provided for this purpose for the software considered.

	
	Installability
	Attributes of software that bear on the effort needed to install the software in a specified environment.

	
	Conformance
	Attributes of software that make the software adhere to standards or conventions relating to portability.

	
	Replaceability
	Attributes of software that bear on opportunity and effort using it in the place of specified other software in the environment of that software.

The current standard is under review. The proposed new edition of ISO/IEC 9126 will be divided into three parts:

ISO/IEC 9126-1: Information technology - Software quality characteristics and metrics - Part 1: Quality characteristics and subcharacteristics.

ISO/IEC 9126-2: Information technology - Software quality characteristics and metrics - Part 2: External metrics.

ISO/IEC 9126-3: Information technology - Software quality characteristics and metrics - Part 3: Internal metrics.

Practical usage

When can we use the technique
Quality in use can be used for different purposes some of them are:
1. Defining the software product quality requirements,

2. Evaluating a software specification to see if it will satisfy the quality requirements during development

3. Describing features and attributes of the implemented software

4. Evaluating developed software before delivery

5. Evaluating the software product before acceptance.

What it means

· Measures of quality in use can thus be interpreted in two ways:

· f all other factors in the context of use are kept constant, the measures can be used to compare different software products or versions of software

· The values are of immediate relevance in a business context, and even if the software cannot be changed, it may be possible to improve quality in use by changes to the hardware, the tasks, or by training the user.

Measures of effectiveness relate the goals or sub-goals of the user to the accuracy and completeness with which these goals are achieved. Measures of satisfaction assess the comfort and acceptability of the use.
Assessing techniques
There are 2 assessing techniques that can be used

1. Questioner based assessment
2. Metric based assessment
Questioner based assessment:
In the questioner based assessment works well for analyzing quality in use. By finding the need of the customer and his view points of the current release we can fix the requirement for external and internal quality measurements.
Process for questioner based approach:

Each sub character converted in to meaningful questions and sent as questioner to the stake holders. Stake holders should rate each sub character in the scale of 1 to 5. and following are the levels
· Very bad = 1

· Bad= 2

· Fair = 3

· Good = 4

· Excellent = 5

These values are grouped on the main character levels and used for assessment.
Sample questioner:
	Name:
	
	

	Configuration used:
	
	

	Over all Rating
	0.0
	

	ISO:9126 Measurements
	Rating
	Reason for rating

	Rating standards (1-Very bad,2-Bad,3-Fair,4-Good,5-Very good)
	
	

	Functionality
	0.0
	

	Suitability-How good the Product/Feature replaces the existing process?
	
	

	Accuracy-Is the product/feature working correctly?
	
	

	Integration- How easy to exchange and use information with other modules?
	
	

	Data Security- Is information secured?
	
	

	Usability
	0.0
	

	Understandability- Is the Product/feature is easy to understand?
	
	

	Learnability- How easy for new user to learn the Product/Feature?
	
	

	Operability - how fit is the product/feature to be used with out customization?
	
	

	Reliability
	0.0
	

	Maturity- is the Product/Feature is completely developed?
	
	

	Fault tolerance- How Product/Feature re-acts when there is an error(Crashes, exits gently, throws error, etc) ?
	
	

	Recoverability –How Product/Feature recovers from the error (data corrupted, function not working, etc) ?
	
	

	Performance
	0.0
	

	Resource behavior-Is Product/Feature consuming more memory?
	
	

	Time behavior- Is product response to user request in acceptable speed?
	
	

	Supportability
	0.0
	

	Analyzability-How easy to analyze the problem and help customer to solve the problem?
	
	

	Changeability –How easy to implement the change?
	
	

	Stability – How stable the Product/Feature?
	
	

	Portability
	0.0
	

	Adaptability –how easy to upgrade to new version?
	
	

	Installability –how easy to install and configure?
	
	

	Conformance –Does Product confines to industrial standards?
	
	

	Replaceability –How good in replaces the previous version?
	
	

Metric based approach

In the metric based approach we define a set of metrics that are useful for measuring the internal quality and the external quality.

The metrics used to evaluate the maintainability could be the following:

Analyzability:

· cyclomatic number

· number of statements

· comments rate

· calling proof

Changeability:

· number of jump

· number of nested levels

· average size of statement

· number of variables

Stability:

· number of parameters referenced

· number of global variables

· number of parameters changed

· number of called relationships

Testability:

· number of non-cyclic path

· number of nested levels

· cyclomatic number

· number of call-paths
The actual implementation of each metric depends on the programming language.

Kiviat graph for information management
We should collect the information using Questioner or metric system for each release. based on the number we should create a Kiviat graph to understand whether quality in use is improving in each release. in Ms- excel you can draw the kiviat graph using Radar graph.

Example of Kiviat graph
[image: image7.emf]0

5

F

U

R

E

S

P

Release1 Release2 Release3 Release4

	Characters
	Release1
	Release2
	Release3
	Release4

	Functionality
	2
	3
	4
	5

	Usability
	3
	3
	5
	5

	Reliability
	2
	3
	4
	5

	Efficiency
	1
	2
	1
	4

	Scalability
	2
	3
	4
	5

	Portability
	2
	4
	5
	5

When we use the questioner based approach we need to cumulate the value that are available in the questioner.
In case of metric based approach we need to give a relative number for the metric value and use the same for each release.

The expected trend is all the co-ordinates grow in all the directions equally.
The idea of the Kiviat graph is to ensure that we improve the character with out affecting the other character we can understand the quality in use in totality.

Understanding from the graph

From the above given graph, following are the observations
1. In release1 we had poor performance /Efficiency
2. In build 2 we improved the performance/Efficiency, and not improved the usability

3. In build 3 we improved the usability, and we degraded the performance/ Efficiency
4. In build 4 we maintained the usability and improved the performance/ Efficiency.

Conclusion

Most existing development processes focus primarily on adherence to technical and process specifications. The objective of quality in use is that real products can be used by real people to achieve their tasks in the real world. This requires not only easy-to-use interfaces, but also the appropriate functionality and support for real business activities and work flows.

Quality in use should be the major design objective for an interactive product: that the product can be used for its intended purpose. Increased quality in use brings significant benefits which have been widely documented (e.g. Bias and Mayhew, 1994; Karat, 1992), including Increased efficiency, Improved productivity, Reduced errors, Reduced training, Improved acceptance.
Reference:

ISO 8402, Quality management and quality assurance -- Vocabulary, 1994.

ISO 9001, Quality systems - Model for quality assurance in design, development,

production, installation and servicing, 1994.

ISO/IEC 9126, Software product evaluation - Quality characteristics and guidelines for

their use, 1991.

ISO/IEC FCD 9126-1, Software product quality - Part 1: Quality model, 1998.

ISO 9241-11, Ergonomic requirements for office work with visual display terminals

(VDT)s - Part 11 Guidance on usability, 1998.
Measurement Method. Behaviour and Information Technology, 16, 1997.

RESPECT, see http://www.npl.co.uk/respect, 1998.
Earthy, J (1998a) Usability Maturity Model: Attitude Scale. INUSE deliverable

D5.1.4s, http://www.npl.co.uk/inuse
Quality in Use: Meeting User Needs for Quality Nigel Bevan
Center of software engineering- Information on software product quality http://www.cse.dcu.ie/essiscope
Quality concepts

http://www.qa-systems.com/concepts/iso9126.html
About Author:
Ramesh Ramani has around 10+ years of experience in managing different types and size of team in various levels.
He is currently working as Senior Manager QA in Tavant Technologies.
He has specialized in test artifact management,Test design and methodologically managing product release using data points.

He has developed a tool Jwap which wraps a test design tool called jenny, and published the tool in sourceforge.net.

He had participated and published papers in various conferences including STeP-IN SUMMIT 2005

[image: image8][image: image9][image: image10]
Effectiveness Productivity Satisfaction

Measuring Client Satisfaction Using Quality in Use
Author: Ramesh Ramani

Page 13 of 13

