Strategies to Maximize the Value of your Updates

At some point in a product’s life cycle, you will need to update your users. Updates are costly and disruptive. Plan to make certain that your updates are successful.

In the early days of developing software for the retail PC market, testing was vital to a company’s financial success. If the product shipped with major defects, it was impossible to fix them without sending out new media. The cost of mastering, duplicating and shipping update diskettes cut deep into a software publisher’s bottom line.

As the industry matured, alternate methods of delivering updates were developed. If your user base had modems, you could use a third-party program to patch program files, or send out zipped updated files. Programming to support the updates, developing update procedures, and maintaining the update library were costly. The costs associated with support were also a factor in needing to reduce the number of needed updates via sound design principles and solid testing.

With the proliferation of Internet connected users, the preferred method for updating has become the Web. Whatever technology is employed, updates are still costly. The publisher needs to create and maintain the Web pages for the update area of their site. The updates must be created and tested. The support staff must be in place to diagnose user problems, determine whether an update is available to address the issue, and walk the user through the update process.

What can you do to make certain that you maximize the value of your updates?

1. Don’t Update. In many cases good planning can eliminate the need to update later on. In other cases there may be an alternative to an update.

Good software development practices can reduce the need to update. Be certain that everyone involved in the development follows procedures. Each step of the development process is important. To reduce issues related to updates in your tools or in operating systems, don’t code using shortcuts or undocumented features of your compiler or operating environment. Be certain that test plans have been thoroughly executed.

Don’t let executives, marketing staff, or developers say “we’ll ship it with this issue open and fix it later”. By doing this you have committed to doing an update. Research the cost associated with an update. Educate everyone involved in the release decision process as to the real costs and intangible costs of updates.

Real costs include the time to specify, code, and test the change. Most of the coding costs may be considered fixed costs (if you repair it now or repair it later, the amount of time spent will be pretty much the same). However, the specification (requirements) costs will probably be incremental. The original situation and the fix will need to be documented for both internal and external sources. The time to test is definitely incremental. The program will need to be tested with the problem and then once it is fixed, prior to update shipping, the change and its affect on the rest of the module and the program will need to be retested. Also estimate support time. Support staff will need to be informed of the issue and trained to recognize it and on workarounds. If the bug is documented on release notes, expect some inquiry calls. If the bug is not documented expect problem calls. Learn to assess the risks of an issue – what will be the impact on support, how many cancellations can we expect, etc.?

Intangible costs include adverse affects on employee morale and adverse customer perception of your company and product. No one feels good about shipping a buggy product. Support representatives don’t appreciate the added work. The sales and customer service groups become more cautious in their enthusiasm for the product.

Use the dollar estimates of the real costs and bring up the intangible costs when making your case against shipping buggy product.

There may be options to updating. If the problem affects only a small number of well-defined customers, and there is a work around, having support deal with the issue may be an alternative. Contacting the twenty five customers affected by a problem and explaining a work around, can at least delay the need for an update – the customers can use the update until the next release is scheduled or another more widely needed update is required. One software publisher bought new modems the only five of its customers still using a 2400 baud modem when they discovered a bug that affected only those five (of over 5,000) users.

If your customers communicate data through your site – billing data, regulatory information, etc. – you may be able to rectify some issues on the backend. If the data can be changed on the host side, you may want to spend some of your update time dealing with the situation on the host side. Good QA practices would dictate that your host would validate and trap bad data from customers who have outdated software. Good customer support practice would have your programming to fix data when possible to allow the customer to complete their transaction. One vendor faced a change in regulator specifications. The specifications changed from MMDDYYYY format for dates to YYYYMMDD. They had the authority to change the data on the host. The vendor had coded to trap bad data and coded to fix data on the host until the customer program could be updated. Rather than forcing an update out to deal with the customer program update, the vendor chose to delay updating the customers until their next scheduled release several months later. The data was correct, and the customers were not burdened with an update.

2. Schedule your updates. The support area may push for an immediate update. Be certain to do a cost benefit analysis. As indicated earlier, a problem that affects a relatively small number of users may be bettered handled by support. As is the case in medicine, your motto should be first do no harm. Rushing an update may cause more harm than good if your fix, breaks something else. Set up testing and SQA processes for updates. Develop a timeline and communicate it to all stakeholders.
For programs that change regularly, set a schedule. For example, if you were working with retail point of sale system, you might indicate that all regulatory changes received by the first Thursday of the month will be available in the monthly release that ships on the 26th. Thus a sales tax change received on Wednesday the third would be available in the update. A change received on Monday the eighth would not be available until the following month. Make a similar rule for non-regulatory changes – programming changes released to test by the first Friday will be available in the monthly release. You want to establish clear expectations up front. Be certain that everyone has input into the schedule and that you set up separate guidelines to deal with emergency situations.

3. Use of a development system. Budget for, setup, and maintain a development system. Development staffs for products that use a dialup host are familiar with the need and use of a development system. They would not put a change into production without testing it on the development system. Web development teams are learning the value of development units and/or sites.
The development system should be able to approximate the live system as much as possible. Use load-testing software to assist in duplicating real world conditions.
4. Plan, plan, plan Develop separate full product test plans and pinpoint specific test scenarios for the testing of updates. Create a test plan to check the specific module fixed. Using these plans will force the testers to test completely.
Follow procedures in shipping/releasing your updates. Don’t be fooled, an update is as critical to your business as the initial release. Resist the temptation to cut corners just because it is only an update.

Develop and use checklists for your updates. Be certain that you have tested the update files with all known released files. Be certain that your product masters are updated. Check the install over existing software and complete a fresh install. Verify installation and performance on all supported platforms. Maintain listings of all program file names, extensions, sizes and dates. Maintain a library of all releases.

Make certain your updates count. Educate your company’s decision makers as to the costs of updating. Thoughtful consideration of the timing and content of updates can maximize their value. Good policies and procedures will ensure the quality of your upgrades. A good upgrade can reduce support costs and morale among your staff. An upgrade should be welcomed by your user base. If you provide good value in your upgrades, you will satisfy your customers.

