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Abstract

This model describes software code defect dynamics in terms of how test and development teams interact. The model also accounts for the different work regimes of both teams and other factors like size of the team, code quality, and software composition. Calculation algorithms and analytical solutions are presented in the paper. The proposed model and calculations present an effective method for analyzing software bugs.
Introduction

Due to its critical nature the problem of prediction and estimate of the defects in the software code has always caused a lot of attention and there are numerous papers and reports focusing on this area. You can find a good review of a multiple models of software defects prediction in the paper “How good is the software: A Review of Defect Prediction Techniques” by B. Clark and D. Zubrow, see http://www.sei.cmu.edu/sema/pdf/defect-prediction-techniques.pdf. When trying to apply these models as well as some of the tools, we have found several limitations:

· These models and tools do not describe the dynamics of the defects. They give more or less general characteristics, like total number of defects at the end of particular phase or year of the project (CostXpert). Other tools, like CaliberRM give timing dependences of the number of defects, but quite a general formula is used (it’s more a model approximation of the typical data than a dependency which reflects the real specifics of the process.)

· Popular models and a majority of tools are not flexible enough to address the situation where the size of development and test teams may change or the software itself consists of the multiple modules of a different quality.

· Available models normally do not take into account the interaction between multiple teams. For example, development and test teams could work in parallel, exchanging bug reports and new software builds daily or they can follow almost independent schedules, since both teams may be involved into multiple projects and products. 

There is always the need to have some handy tool or method which would produce meaningful data us, be specific to the project conditions and be easy to understand and work with. Although we recognize that good prediction techniques require the collection and analysis of the large volumes of historical data and that such investment will be justified in the long run, we wanted to make some estimates quickly and use the project data currently available to us. All of these factors resulted in the simple model of software defect dynamics which we present below.

Model

Before we go into the model description, we should define some terms. We shall define two types of defects.  First, defects that exist in code but have hot not been discovered by the test team.  These we refer to as latent defects and are defined as 
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. Another type of defect is the active defect – one which has already been discovered by the test team and development team is working on fixing it. The number of such defects is defined as 
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 is the defect detection rate, which describes how quickly the test team finds new defects, while 
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is the fixing rate – the development team speed on fixing the discovered defects. When developers are fixing bugs, they inevitably introduce new ones with the rate marked as 
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. Then, the set of equations describing the dynamics of both latent and active defects will look as following:
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, where 
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 is the initial number of latent defects. We will discuss later on how it can be extracted from some real data. The software industry has vast experience with the estimates for this number. The most popular (and simple) estimate is just a percentage derived from the overall number of lines of code or a parameter which stands for the number of defects per thousand logical lines of code. For the sake of our efforts we assume that we have a reliable estimate for this number driven by the whole size of the code being developed. We also assume that both rates, 
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are known for us from our every day experience and we will also omit 
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. These rates can be the function of time (for instance dealing with the code of a different quality, code reuse or different teams) and normally are proportional to the number of developers in the teams. Below we will first show the general approach to the calculation of the number of defects and then we will spend some additional time looking at an analytical solution. 

When both rates are functions of time (and potentially number of defects as well), these equations can be solved only numerically by applying the simplest scheme from the numeric computations. By dividing the overall time of interest 
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, the discrete values for the defects of both types can be defined as follows:
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By knowing the values of 
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 and 
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 at the previous time step the scheme shown above allows us to calculate their values at the next time increment. So, the computer calculation runs in the following loop: we know initial values for 
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, we first calculate the value of 
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 on the next time interval from the first equation, then by putting it into the second equation we calculate the value of 
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 on the same iteration and put it into the first equation to recalculate 
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 on the next time interval and this procedure runs 
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times until it covers the whole time interval 
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, that we defined initially for our calculations. 

This algorithm is very simple, it takes about 20 lines of code in any programming language to implement it and at the same time it’s quite flexible. We can account for different timing dependencies of the defect discovery and fixing rates (for example, adding more people in the team, working with the different code, etc.) or having different regimes of team work (one rate can be put to zero for some time interval, accounting for the fact that this team is not currently working) Below are some of the results of our calculations. We present them in a normalized form since our reader is not interested in the project specific data.  These graphs show the dynamics of the defects due to the different ratio between 
[image: image25.wmf]d

R

 and 
[image: image26.wmf]f

R

.

[image: image27.emf]Ratio: 0.5

t

N


Figure 1.  Dynamics of latent (blue) and active (red) defects. 
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Figure 2.  Dynamics of latent (blue) and active (red) defects. 
[image: image30.wmf]1

=

d

f

R

R


[image: image31.emf]Ratio: 2

t

N


Figure 3.  Dynamics of latent (blue) and active (red) defects. 
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It is worth mentioning that even when the rates of defect discovery and correction are equal (see Figure 2), additional time is still required for the active defects to be fixed even when the number of latent defects have decreased to a very small number.

The calculation scheme presented above can be easily extended to take into account other factors. For example, a development team does not work in parallel with the test team but will start work on the fixing bugs later on. Then we will run the iteration process for the first equation only until we reach the time when a development team starts its work and then we’ll start running both equations (obviously with a different initial conditions).

Another example is when some portion of the defects are not really software bugs, but more change requests, enhancements, workarounds and “nice to have” features. Then we have to introduce another variable (let’s call it the number of enhancements 
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, which will be dependent on the current number of active defects, and we define the rate of the defects status transformation from the bug into enhancement as 
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). Then our equations describing the defects dynamics will look as following:
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Looking at the computation scheme presented above, one can easily understand how it should be modified to include the third equation into it.

When both rates are not dependent on time and other parameters and we can neglect the rate of the secondary defect generation, these equations have an analytical solution which can be written as following:
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and when 
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Analytical formulas for 
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 (especially the last one) give us a good tool for validation of the 
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 value (initial number of “hidden” defects in the code) and checking on the bug fixing rate as well. Having a minimal set of the real data taken from the QA department we were able to determine the real values for 
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 and confirm the rate values used for simulation. 

 On the graph below we present a few data points obtained from the QA department and next to the real data we put our model approximation which allowed us to extract all our model parameters from this limited data set. 
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Figure 4.  Comparison the real data (blue) and simulated (red) defects. 
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Once defined, our model parameters allowed us to perform calculations covering different dates and date ranges of the work, providing both confirmation of the existing production data as well as showing us future behavior and the rate of software code improvement. 

Conclusion

We believe that the proposed model adequately describes the dynamics of software defects. After extracting model parameters out of the short sample of the production data both the analytical model and the calculation algorithm allow to estimate the number of software bugs and predict their behavior.
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