
BIO

PAPER

International Conference On
Software Testing Analysis & Review

November 4-8, 2002
Anaheim, CA USA

T16

November 7, 2002
 2:30 PM

IMPROVEMENT IS A JOURNEY: A
SOFTWARE TEST IMPROVEMENT

ROAD MAP

Karen Rosengren
IBM

Karen Rosengren
Karen has worked for IBM for 23 years, with over 15 years of test experience. Most of
her testing career has been spent testing operating systems, first in Poughkeepsie, New
York working on IBM’s OS/390, then in Boca Raton, Florida working on OS/2. She is
currently the IBM TEST Technology Leader, reporting to the IBM Director of Test. Her
mission is to improve testing at IBM through the use of technology and tools. She
investigates the latest tools and practices in order to develop the methodology to make
testing more effective and efficient, and sets direction for improvement within the test
teams across IBM based on that methodology. She works closely with the teams to
understand their environments and products, educates them on the latest technology,
and drives change into the teams.

Karen has a B.S. degree in Computer Science from The Pennsylvania State University.
She lives in Round Rock, Texas with her husband, who also works for IBM, and their two
children.

1

Improvement is a Journey:
Strategic Test Improvement Roadmap

STIR

Karen Rosengren

IBM Corporation

krosengr@us.ibm.com

2

Introduction
So, you want to improve the quality of the testing done by your organization? The test
quality improvement journey has several aspects to consider: the identification of
improvement actions, which improvement action to start with and how to continue to
improve. This document focuses on those improvement actions and ways to implement
and improve on an existing set of good practices.

The Strategic Test Improvement Roadmap (STIR) is a tool which our organization has
used to identify good testing practices and to provide a roadmap to implementing and
improving on those practices. Our “definition” of practice is: a repeatable performance
of an activity, capturing the skill gained from experience. In other words, practices are
those testing activities that are done on a daily basis. And, as experience is gained, the
quality and performance of those activities improves. At first glance, this appears fairly
simple. However, there are many good testing practices out there. How do you know
where to start? How do you know which practices you are capable of implementing?
How do you know which practices will help you the most?

Background of our Testing Improvement Journey
At this point, let’s step back for a moment. In 1998, Bill Woodworth was appointed the
IBM Director of Test, a position covering the entire corporation. His mission was to
improve the way that testing was being done at IBM. He created the IBM TEST
Community Leaders (ITCL), a group of 30 of the top technical people in test (Top Guns),
with a corresponding 30 managers, who held key middle management positions in test.
The idea behind the ITCL was to bring testers together to share experiences with each
other and to strengthen test across IBM by allowing the individual units to grow and
improve. The purpose of this group was for the same reason many testers attend
conferences like STAR; to find new ideas and to share what is currently being done so
that their organization can improve on the way test is being done. This concept sounds
simple enough, but in reality we ran into many challenges. We were working with a very
diverse set of testers and products, and the culture within each of the groups was
different. As stated earlier, the practices are really what are done on a day-to-day basis.
Each of the areas represented did testing differently, had different processes, and used a
wide variety of practices. They developed products that spanned many functions;
microcode, base operating systems, middleware, and applications. On top of that, each
area’s organization represented a different culture. Some placed a high value on test,
while others did not. This made it very difficult to identify "best practices" that were
applicable to such a diverse set of testers and gave us many challenges when we actually
tried to deploy a set of practices. We noticed that some teams were very successful at
implementing and deploying new practices. While other teams floundered and failed
miserably, unable to determine where and how to start. In order to make each of our
teams successful we needed a structure to communicate what the good practices are and
to show them how to deploy those practices in such a way as to maximize their success.

3

Development of the Strategic Test Improvement Roadmap
As stated earlier, the ITCL was made up of top technical leaders from various test areas.
Many of them had more than 10 years of experience in test and found it fairly easy to
apply that experience to deploying new practices. However, in many cases, they were
not the norm and that worked against us. Finally, Dave Jewell, one of the Top Guns,
presented some fairly basic but extremely important insight into deploying practices. He
noticed that practices vary by the level of skill and experience that is required to
implement them. That is why we saw tremendous success with some of our practices and
why only a few groups were able to deploy other practices. We also realized that
practices are related to each other. We saw that it was impossible to deploy certain
practices until some other practice was successfully deployed.

Based on these observations, we developed a structure that we called the Strategic Test
Improvement Roadmap (STIR) to easily define for a tester which practices the ITCL
recommends and to provide a logical way to implement them. The concept is that teams
start with practices at the basic level, and implement the basic steps within those
practices. As they improve, gain skill, and collect data, they can implement practices that
start at the intermediate level. They can then revisit practices started at the basic level
and implement the intermediate steps for those practices. What this structure allows us to
provide is a simple way to show the teams what the ITCL recommended practices are, as
well as how to implement them in a way that allows the greatest opportunity for success.

An important point is that STIR is not a maturity model. It’s an organization of practices
to help determine which practice should or can be deployed next. A maturity model
measures an organization. STIR does not measure the maturity of an organization.

4

Figure 1 Overview of STIR

Test Practice Levels
From a structural point of view, the practices are grouped into levels, from basic to
engineered. Those practices which are absolutely necessary to establish control over
your projects are at the basic level. These are the easiest practices to implement and ones
that have seen deployed in most organizations. Practices that require data from other
practices or those that require a more skilled organization to implement are at the
intermediate or advanced level. Also, to stress continuous improvement and to aid with
deployment, each individual practice has implementation steps that are at the basic to
engineered level.

Basic is the starting point. These are practices that are necessary to provide control over
projects. They require little skill to implement them and they are the basis for further
improvements. The test organization can implement these practices with no involvement
from areas outside of test in the development life cycle.

Intermediate practices focus on creating a repeatable process. They start to involve
development, but in a reactive way. For instance, an intermediate step of review and
inspection would involve reviewing a document after it was written and providing
comments.

Advanced, with this level the test organization starts to become more proactive, involved
earlier in the development cycle, providing input to the development of requirements,

5

designs and specifications, instead of just reviewing and providing comments. The key
focus is on improving productivity and enhancing effectiveness.

At both the intermediate and advanced levels, new practices are introduced.

Engineered, we are still working on what it means to be engineered, but our goal is the
total integration of all practices. We do not introduce new practices at this level, but
would probably expect a test team to be implementing practices at the engineered level to
handle introducing leading edge technology.

Test Domains
We further categorized the practices by "domain". The definition of domain is sphere of
activity. Domains are collections of activities that are related, like planning or execution.
They are loosely related to steps in a process, but by calling them domains, we did not tie
STIR to any specific process. With the variety of test groups that we are supporting, we
could not tie STIR to one specific process.

Test Management is the basic process of identifying tasks, tracking status, and moving a
project along to completion.

Test Planning encompasses those activities associated with anticipating the tasks that
will need to be performed and documenting them. This is the first step and the place
where the feedback loop should be closed. As you start a new project, you should always
look back to see what worked well and not so well and plan for improvements.

Test Design/Development involves the activities of designing and documenting test
cases, test scripts, etc. The work done here is the result of test planning.

Test Execution and Defect Detection is really the heart of the testing. This is where the
test cases or scripts are actually executed and results verified, problems researched, i.e.
all the real day-to-day work of the test team. Defect detection is included since both
static and dynamic testing are covered in this domain. Static testing is reviewing
documents and code. This form of testing allows the detection of defects without actual
execution.

The Practices
Now that STIR is defined, as well as structure and philosophy behind it, here is the heart
of STIR. The ITCL recommended practices listed below are how we initiate our testers
into a quality testing structure. We have these practices available on our internal test web
site for availability to the entire test organization. For each of the practices, there is a link
to a brief, 3-5 page description of the practice and the implementation steps at each of the
STIR levels. We have kept the write-ups very short, since they are meant to be a starting
point, not the definitive information on the practice. Given this structure, it’s straight
forward for the tester to see which the easier practices to implement are and which ones
require more skill or resource. We developed this list of practices based on research done

6

within IBM and across the IT industry, plus hours of discussion among the Top Guns. It
has proved to be a good starting point for us.

The following list shows the implementation steps by STIR level for all of the ITCL
recommended practices.

Practices which can be implemented starting at the basic level:
• Management of Test Case Status and Overall Status: This practice allows

the test team to articulate, in a timely manner, where you are in a particular
testing phase of the development life cycle.

Basic: The results of executing test cases are tracked manually. The
results are maintained in some kind of repository. This repository could be
as simple as a piece of paper, but typically is a spread sheet, database, flat
file, etc. Test results are plotted on an S-curve, as is the outstanding defect
backlog.
Intermediate: While the development of tests may still be a manual
process, the tracking of their execution is under the control of automation.
Automation is used to monitor and/or record the status of test execution, to
support linkage to related defects and to enable reporting of test status.
Advanced: Results are tracked automatically, with defects linked to failed
test results. Predictive tooling is implemented to help determine when the
appropriate quality level will be achieved, taking defect arrival rates,
backlogs, and closure rates into account.

• Formal Entry/Exit Criteria: The implementation of this practice allows the
tests that have been defined for a product to be executed in an effective and
efficient manner and to find the types of defects that they are targeted to find,
as well as help determine when testing is finished for each test phase.

Basic: Simple test entry and exit criteria are established and enforced.
Risk assessments are used for all criteria with a simple high/medium/low
assessment.
Intermediate: Metrics gathered are used to enhance and support entry and
exit criteria. Historical data is used to hone risk assessments.
Advanced: Entry and exit criteria use overall product metrics. Entry
criteria are used to influence prior process steps.

• Defect Management: This practice includes the problem tracking,
determination and evaluation mechanisms used during the development life
cycle.

Basic: Use a defect tracking tool to capture defects during a test and track
them to resolution.
Intermediate: Capture defect statistics at the end of each release and use
it to produce basic product quality metrics. If doing integration test
involving multiple development groups, the system is capable of
successfully managing defect tracking and resolution across these groups.
Advanced: Do defect trending and capture metrics across multiple
releases to understand if product or process quality is making progress.

7

• Teaming Testers with Developers: Implementation of this practice involves
getting testers and developers to work together to enhance knowledge of
processes and products, and to create an atmosphere that is not adversarial. It
should ultimately show its benefits in detection of defects earlier in the
product cycle, improvements in test effectiveness and product quality, more
efficiency in defect analysis and turn-around time as well as a decrease overall
in the product development cycle.

Basic: Obtain test and development leadership team support for the
teaming of testers and developers, and get acquainted with each other.
Intermediate: Become active earlier in the product cycle by becoming
more involved with development work items, invite development to take
part in test planning activities, and take basic steps to facilitate testers
working with developers.
Advanced: Get more involved with development by providing them with
early test feedback and performing tests with them. Start to reach out to
other product teams.

• Testing to Requirements: The implementation of this practice makes
creating test cases and testing more dynamic, as each phase of the software
development lifecycle is verified and validated against the requirement set.
Requirements based testing is one of the primary ways to ensure that all of the
needs of the customer have been coded, verified and delivered.

Basic: Use requirements documents as the source of testing. Ensure the
requirements are testable.
Intermediate: Requirements can be traced throughout the system. Testers
participate in requirements reviews and represent customer's voice.
Advanced: All documents are traced back to the baseline requirements.
Testers are fully involved throughout the process and ensure all activities
relate to the original requirement document(s).

• DBCS Test Method and Approach: Double Byte Character Set testing is
carried out to make sure that a product is suitable for marketing in the local
language in Japan, Korea, China and Taiwan. DBCS testing should be
considered as a specialized aspect of the overall product test.

Basic: Test cases verify the ability to input, store, display, and print the
DBCS characters correctly.
Intermediate: Test cases verify the ability to exchange DBCS data across
different operating systems and locales. The quality (including aesthetics)
of the DBCS output is also verified.
Advanced: Test cases verify that the product integrates into the entire
product stack required for a DBCS solution.

• Functional Specifications: Functional specification documentation describes
the 'what' information that is required for function and system testing. It
should describe the product in terms of external functions, aiding testers in
developing test cases. The implementation of this practice, when there are
documented specifications, will provide many benefits, i.e. the detection of
defects earlier in the product cycle, improvements in test effectiveness and
efficiency, improvements in test coverage and increased product quality.

8

Basic: Obtain, in some form, basic documentation about 'what' it is you
are going to test; apply it to your test plans and test cases.
Intermediate: Analyze the functional specification information provided;
develop a list of information you need. Participate in document reviews to
request additional information that will improve your test.
Advanced: Work with development to create the functional
specifications. Use the information you now have to revalidate test
projections, resource planning and schedules. Add a testability focus to
the functional specifications. Start making plans for future automation of
test variations and test case generation.

• Testware Control: The control of the test material required to run your test
cases (programs, scripts, documentation, data, etc.) is vital to the maintenance
of the test's most valuable asset.

Basic: Testware is held in a central location with backup procedures in
place.
Intermediate: Repositories are used to manage key deliverables (test
plans, test cases, scripts, inputs to test, outputs from test). Disciplined
change management procedures are implemented to introduce changes on
a carefully planned basis.
Advanced: Intermediate version control is successfully applied to an
integration test involving multiple applications, multiple development
and/or test groups. Release control processes are in place. Distribution of
testware from the repository to the test environments is automated.

• Reviews and Inspections: The purpose of this practice is to identify defects
in requirements, design, code, test plans, test programs and documentation so
they can be corrected before they escape to a later step in the development
process.

Basic: Informal reviews of test deliverables by others on the test team are
a common and regular practice.
Intermediate: Reviews conducted by the test team include key
representatives from development and other affected areas. At least some
testers take part in requirements and design reviews. Most review
meetings are conducted more formally than simple walk-throughs.
Advanced: Deployment of the reviews and inspections practice is
pervasive and fairly consistent throughout the organization, with much
greater rigor involved in planning for inspections, conducting the
meetings, and ensuring that defects are properly resolved.

Practices which can be implemented starting at the intermediate level:
• Code Coverage: The main technique for demonstrating that the testing has

been thorough is called coverage analysis. Simply stated, the idea is to create,
in some systematic fashion, a large and comprehensive list of tasks and check
that each task is covered in the testing phase.

Intermediate: Code coverage is used for unit testing. Team has a tool
that supports their efforts and automated test execution practice to allow
fullest advantage.

9

Advanced: Code coverage is used for function and/or system testing
where it is appropriate. Where applicable, coverage is used to minimize
regression test suites.

• Defect Analysis: Problem defect analysis addresses understanding the root
cause underlying the defect as well as a few other semantics like: how is was
it found, what was done incorrectly, who made the error, when was it made,
why wasn't it detected earlier, and how could it have been prevented?

Intermediate: Defects are classified by a scheme and data is used to
justify some decisions.
Advanced: Defect data is used to implement and measure improvement
actions and drive decisions.

• Design for Testability: Testability is the degree to which the system aids the
establishment of test criteria and the performance of tests to determine
whether the criteria have been met. When a product or solution is developed
with "ease of test" as an attribute, it becomes easier for the test team to do the
verification and validation. The test team can verify the function more
efficiently and focus on other test tasks.

 Intermediate: Guidelines for testability exist and are used in reviews.
 Advanced: Test participates in defining the design and driving in
testability.

• Minimizing Regression Test: This practice looks at techniques which aim to
reduce the size of regression test suites. The issue is basically how to select
tests from the entire pool of possible tests such that when they are executed
the maximum amount of product functionality is exercised by the minimum
number of tests.

Intermediate: Analyze historical defect data to identify test cases which
only detect defects which are also detected by other test cases or have a
long history of never detecting a defect.
Advanced: Select test cases from knowledge of how they exercise the
underlying product under test, possibly by using a code coverage tool.

• Customer Information into Test: This practice describes some methods of
bringing information about customers, their concerns and their environments
into test.

Intermediate: Start gathering customer information from internal sources
such as people and forums, analysis of field data, and use this information
to create use cases and/or implementing patterns in your environment.
Advanced: Become directly involved with customers by working critical
situations and customer site visits.

• Automation of Test Execution: The implementation of this practice provides
a way for test to leverage their resources, increasing both the coverage and
frequency of execution. This deals with the type of automation that most
people think of when they hear the phrase "test automation". That is, the
specific sequence of actions that are normally taken to execute a test case will
be done programmatically instead of manually.

Intermediate: Determine the short and long term benefits for test
execution automation. Educate the test team in the fundamentals of

10

automated test execution. Develop and use automated scripts and/or
programs that execute straight forward function type testing.
Advanced: Develop a test execution automation strategy. Design,
develop, implement and deploy an automated test execution system.
Maintain the test execution automation system from release to release.
Continually expand automated test execution into more advanced areas of
testing.

• Automated Test Case Generation: This practice seeks to automate the
creation of test cases. Test cases are generated automatically rather than being
created by hand.

Intermediate: Test case generation tools are used. These allow testers to
work at a higher level of abstraction and create test cases more quickly.
Functional specifications and automated test execution are used. Basic
defect analysis is in use to evaluate effectiveness of generated tests.
Advanced: Model-based testing is deployed within the organization. A
subset of testers has expertise building and debugging models and
generating test suites from them. Effective feedback loops exist
connecting the model building team with the development team. Defect
analysis is done to facilitate continuous model improvement.

• Automated Test Environment Control: This practice details ways that you
can reduce the amount of setup time required prior to starting execution of test
cases. This practice also includes such things as the monitoring and logging
of test case execution status, test system cleanup as well as the controlling and
monitoring of all systems under test simultaneously from a central site.

Intermediate: Incorporate a semi-automated or fully automated process
that generates a desired test operating system configuration onto a test
machine. Educate the team on fundamentals of automated test
environment control.
Advanced: Develop a test environment automation control strategy.
Design, develop, implement and deploy an automated test environment
from start to finish. Control and monitor the test system from a central
site.

Practices which can be implemented starting at the advanced level:
• Shared Test Environment: This practice deals with how sharing of complex

test environments is successfully accomplished, and addresses issues such as;
funding, support and maintenance of the system, change management,
configuration management, capacity management, connectivity, coordinating
separate and/or concurrent use of the system, and problem determination and
resolution of environment problems.

Advanced: Successfully leveraging a common set of test environment
resources across multiple groups and/or locations to support multiple or
complex tests. This would include managing issues such as business case
or funding, documents of understanding covering usage and service level
expectations, support structure and procedures, communications between
groups, problem management and test coordination procedures,

11

communication procedures, process improvement procedures, and how to
determine the value-add provided by the shared environment.

The Usage of STIR
So now that STIR is defined, let's take a look at how to use STIR. The first step is to
figure out which practices your organization currently uses and how they are used.
Within IBM, a self-assessment was developed that asks the testers a set of questions for
each recommended practice. The questions on the self-assessment are based on
information that is provided in the list above. Additional questions were added to help
determine whether or not implementing a practice is or is not a problem, thus invoking
some discussion. Nothing that formal needs to be developed, the practice information
that is provided can be used to discuss what your team does relative to each practice. The
important thing is that you determine what your strengths and weaknesses are, and from
there determine what your needs are.

Once you have determined what your needs are, you can identify areas for improvement.
The use of STIR helps identify those improvement actions which have the greatest
potential to be successful. In other words, if you have determined that you do some of
the practices which are classified as basic, but not all of them, then other basic practices
should be investigated. At the most, you would look at implementing some of the
intermediate practices. You could also improve the way a basic practice is implemented
by implementing steps at the intermediate level. What you do not want to do is attempt
to implement an advanced practice.

After your improvement action plan is identified, the next step is to determine how to
implement it. This includes the resources, skills and schedule available for the
implementation, as well as the expectations. Initially, it is important not to be too
aggressive; building on small improvements usually works better in the long term. Also,
some method needs to be put in place to measure the improvements in order to determine
if you have met the expectations.

As you implement your plan, remember to checkpoint your progress along the way to
make sure that you stay on track and are actually making progress.

And, of course, remember that this is a journey. You need to periodically reassess
yourself to determine your progress. Doing this makes a good, closed-loop process and
keeps you focused on continuous improvement.

If you need to add some new practices, use the definitions of the levels that are provided
to determine where the new practice fits in relation to other practices. Then break down
the implementation of the practice into small steps and determine the levels of the steps
by again using the definitions that are provided.

12

The Current Status of STIR
Just as our implementation of practices is evolving, so is STIR evolving. We have the
basic structure down. The test teams are using STIR to identify improvement actions and
they find it very helpful. We are very pleased with the enthusiasm and use of STIR.
We have identified 18 very good practices and have documented them. However, just as
we encourage our test teams to continuously improve the implementation of each
practice, we need to continuously improve the list of practices and not allow them to
stagnate. We feel we have some holes; we certainly need more practices to bring in at the
advanced levels to push our stronger test groups. Also, you may have noticed that there
is no information about the engineered level throughout this document. We are working
on exactly what it means for practices to be implemented at the engineered level. We
have an idea of what we want, which is total integration of the process. But, in some
ways the tool sets are not there yet to support that total integration and we are working on
that. As this point we have not identified a test team which is implementing practices at
the engineered level as we have defined engineered. So we have some time, but it's an
area that we need to focus on to be ready to push the test teams.

A Summary of STIR
STIR is a great tool; it has been very well received by our test teams and has been very
effective in helping them improve the way they are doing their testing. By using STIR
and the self-assessment, it shows them what they are currently implementing and where
they have to improve skills or gather additional data to implement some improvements.
But, beware of a trap that is easy to fall into. Certain practices at certain levels require a
certain level of skill. However, to turn that around slightly and say that if a team
implements a practice at a certain level, the team must be at a certain level is not
necessarily true. Or, conversely, to say that if a team does not implement a given practice
at all or at a particular level, the team is not at that level or does not have the skill to be at
that level is not true. They may choose not to implement a practice or a step for business
reasons. STIR does not measure an organization; it measures level of difficulty of a
practice or a step within a practice. Don't try to read more into it than is there. If what
you really want to do is measure the maturity of your organization, then you need to use
something that was developed to measure the maturity of your organization. If what you
want is to get your team on a path of continuous improvement, then STIR can help.

	TITLE PAGE
	BIO
	PAPER

