
www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 2000
22

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Management & TeamsManagement & Teams

DINOSAURS
Using Adaptive Software Development

to meet the challenges of a high-speed,

high-change environment

by Jim Highsmith

RETIR ING
LIFECYCLE

Contrary to what you’ve heard all of your life,

form doesn’t follow function. Form follows

failure.

“The form of made things is always sub-

ject to change in response to their real or per-

ceived shortcomings, their failures to func-

tion properly,” writes Henry

Petroski, civil engineering pro-

fessor and author of The Evo-

lution of Useful Things. “This

principle governs all invention, innovation,

and ingenuity; it is what drives all inventors,

innovators, and engineers.” In a similar vein,

author Stuart Brand decries the oft quoted

“form follows function” as an illusion, writing

in How Buildings Learn: “[Louis] Sullivan’s

form-follows-function misled a

century of architects into be-

lieving that they could really

anticipate function.”

QUICK LOOK

■ Rethinking traditional project
management practices

■ 6 characteristics of an
adaptive lifecycle

http://www.stqemagazine.com/

May/June 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
23

What can we learn from all this? First, as Brand points
out, that none of us can really anticipate function very well.
For all the many books on requirements engineering, the
best way to determine how a product should evolve—Pet-
roski writes about zippers and forks—is to use it. Effective,
lean requirements analysis practices are still very neces-
sary, as long as developers realize that those analyses are
insufficient by themselves.

Second, iteration—building, trying, succeeding, fail-
ing, rebuilding—governs successful product development,
particularly as the competitive environment becomes more
extreme. “Good enough” requirements need to be followed
by some form of usage (possibly utilizing a customer-driven
prototype), and then followed by evolutionary changes to
the requirements based on that usage.

Although a number of modern software development
lifecycles have adopted an iterative approach, they still
miss the mark in dealing with the messiness and unpre-
dictability of complex (high-speed, high-change) environ-
ments. While the cycles are iterative, the fundamental as-
sumptions are still deterministic—they convey the
impression of short waterfall lifecycles strung together.

But as the world becomes increasingly dynamic—as
technological and business changes accelerate—static man-
agement practices are overwhelmed. The old world was one
of optimization in which efficiency, predictability, and con-
trol dominated. The new world is one of adaptation in which
change, improvisation, and innovation rule. This dichoto-
my—optimization versus adaptation—provides a distinct
way of viewing the future of software project management.

We, the purveyors of the most momentous technologi-
cal change period in the history of business, still don’t “get
it.” Every publication—from ComputerWorld to Business
Week—trumpets to business leaders that “business will nev-
er be the same.” Why then, do we insist that software devel-
opment and management practices won’t undergo dramatic
changes also? We seem to accept the idea that everything is
changing to fit this 21st Century Internet world; everything
is changing, that is, except for you and me, and the ways
we’re comfortable doing what we do. Does that make sense?

In a Dilbert cartoon, Wally the co-worker bemoans the
fact he has no impact on results, but he can take solace in
having “process pride.” As Wally says, “Everything I do is
still pointless, but I’m very proud of the way I do it.” Maybe
it’s time for a new outlook. It’s time for an era of results over
process, understanding over documents, collaboration over
control, adaptation over optimization.

Adaptive Software Development (ASD) is one of a
growing number of alternatives to traditional, process-
centric software management methods. ASD, Extreme Pro-
gramming (XP), Lean Development, SCRUM, and Crystal
Light methods—although different in many respects—are
tied together by a focus on people, results, minimal meth-
ods, and maximum collaboration. They are geared to the
high speed and high change of today’s e-business projects.

Whether you’re managing testing, leading a develop-
ment team, or running an entire project, it’s time to re-
consider the values and assumptions that underlie their
management. The practices of Adaptive Software Devel-
opment are driven by a belief in continuous adaptation—a
different philosophy and a different lifecycle, one geared
to accepting continuous change as the norm.

In ASD, the static Plan-Design-Build lifecycle is re-
placed by a dynamic Speculate-Collaborate-Learn lifecycle
(see Figure 1). This is a lifecycle dedicated to continuous
learning—and geared to constant change, re-evaluation,
peering into an uncertain future, and intense collabora-
tion among developers, testers, and customers. (Note that
it’s not always a simple circle; even in an iterative
process, one shouldn’t be adverse to diverging in order to
explore areas not considered before.)

ASD, rooted in an underlying conceptual base of com-
plex adaptive systems theory, was designed for extreme pro-
jects in which high-speed, high-change, and uncertainty
reign. Many, many projects are not extreme; but for those
that are, ASD fits better than traditional software
development approaches. (See the Webinfolink feature at
the end of this article for more information on adaptive sys-
tems theory.)

A Change-Oriented Lifecycle
A typical project management cycle of Plan-Deliver-Review,
based on an assumption of a relatively stable business envi-
ronment, becomes overwhelmed by high change. The first
step in that cycle, planning, is one of the most difficult con-
cepts for engineers and managers to examine thoughtfully.
Raised on the science of reductionism (reducing everything
to its component parts) and the near-religious belief that
careful planning—followed by rigorous engineering execu-
tion—produces the desired results (we are in control), the
idea that there is no way to “do it right the first time” re-
mains foreign to many.

The word “plan,” when used in most organizations, in-
dicates a reasonably high degree of certainty about the de-
sired result. The implicit and explicit goal of “making a
plan” restricts the project manager’s ability to steer the re-
sults in innovative directions. While operating in this mode
produces the results you planned for, they may not be the
results you now need.

Speculation gives us more room to explore, to make

Learn

S
p

ec
ul

ate Collaborate

Or can
diverge

Or can
diverge

Or can
diverge

FIGURE 1 The adaptive lifecycleA
N

N
IE

 B
IS

S
E

T
T

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

clear the realization that we are unsure, to allow us to devi-
ate from plans without fear. It doesn’t mean that planning
is obsolete, just that planning is acknowledgeably more
tenuous than it was in the past. It means we have to keep
delivery cycles short and encourage iteration. Speculating
doesn’t mean abandoning planning, it merely acknowl-
edges the reality of uncertainty. Too often, deviations from
traditional plans are considered mistakes to be corrected
rather than opportunities for learning. Speculation recog-
nizes the uncertain nature of complex problems, and en-
courages exploration and experimentation. Speculating
(difficult for my banking clients) allows us to admit that we
don’t know everything—and once we admit to ourselves
that we are fallible, then learning (the third step in this cy-
cle) becomes more likely.

The second conceptual component of an adaptive life-
cycle is that of Collaboration. Complex applications are
not built; they evolve. Complex applications require a large
volume of information to be collected, analyzed, and ap-
plied to the problem—a much larger volume than any indi-
vidual can handle alone. “None of us is as smart as all of
us,” write Warren Bennis and Patricia Biederman in Orga-
nizing Genius. While there is always room for improve-
ment, most software engineers are reasonably proficient in
analysis, programming, testing, and similar skills. But tur-
bulent environments are defined in part by high rates of in-
formation flow and diverse knowledge requirements. Build-
ing an e-commerce site requires greater diversity of
technology, business skills, and knowledge than the typical
project of five to ten years ago. In this high-information-
flow environment, in which one person or small group can’t
possibly “know it all,” collaboration skills—working jointly
to produce results or make decisions—are paramount.

In his book No More Teams, Mastering the Dynam-
ics of Creative Collaboration, author Michael Schrage
defines collaboration as “an act of shared creation and/or
discovery.” The issue, says Schrage, isn’t teams: it’s “what
kind of relationships organizations need to create and
maintain if they want to deliver unique value to their cus-
tomers and clients.” Shared creation crosses traditional
project team boundaries. It encompasses the development
team, customers, outside consultants, and vendors. Col-
laboration then becomes the third key to building a more
adaptable project management lifecycle. Teams must col-
laborate on technical problems and business require-
ments. Teams need to improve their joint decision-making
ability, and more decisions must be delegated to the team
level, because rapid change (and tight schedules) pre-
cludes the traditional Command-Control style of decision
making.

That decision making depends on the third conceptual
component of this cycle: Learning. We have to test our
knowledge constantly—using practices like project retro-
spectives and customer focus groups. Furthermore, these
review practices should be done after each iterative cycle
rather than waiting until the end of the project. The quality
of learning derived from practices like project retrospec-
tives provides a key indicator about the true commitment to
learning in an organization, and, therefore, a key to its
adaptability.

Examining beliefs, assumptions, and mental models
comes hard for many organizations. Learning about one-
self—whether personally, at a project team level, or at an
organizational level—can be painful. Project postmortems,
for example, are simple in concept, asking periodically
about what went right and what went wrong and what

Even as a child, John Sarkela saw that
the “Plan-Deliver-Review” model

wasn’t always very realistic.
“My father was a social worker,” he

recalls, “and I remember there being par-
allels. Helping people build something
workable out of chaotic unpredictable
circumstances…in my father’s line of
work it was all about helping people
learn and respond to cognitive disso-
nance in their world models, and make
adaptive changes.”

In that sense, it wasn’t far off from
software development. “It’s the same
process,” he points out, “no matter
which discipline you’re in. You’re dealing

with constantly changing requirements,
a shifting understanding of those re-
quirements, and re-targeting your devel-
opment efforts.” The project—be it a new
database application or a life in transi-
tion—must accommodate that new in-
formation, that new understanding.

Sarkela, chief technical officer for
the new metamedia publishing develop-
ment company Fourth Estate, acknowl-
edged long ago that software inven-
tion—and life in general—is too
unpredictable to work in a rigid textbook
grid.

“I’ve embraced adaptive software
development processes pretty much

throughout my career,” he says. “I’ve had
to make compromises, depending on
what projects and companies I’ve been
working with, but the Speculate/Collab-
orate/Learn model has been pretty fun-
damental in my history as a developer
and consultant.”

Speculating is necessary to set a di-
rection, focus on a deliverable, and start
moving. And once you’re in motion, col-
laboration is vital to deepening your ini-
tial understanding of the product and the
process. Keep in mind, says Sarkela, that
these are not singular events; specula-
tion and collaboration are recurring ac-
tivities throughout the project.

Of Social Work and Software

PERSPECTIVE

24

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 2000

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

changes need to be made in the future. Postmortems are
difficult for most organizations, however, because they can
degenerate into blaming and politics—becoming vehicles
for “who do we blame,” rather than “how do we learn.” To
become an adaptive, agile organization, one must first be-
come a learning organization.

Characteristics of an Adaptive
Lifecycle
An adaptive lifecycle has six basic characteristics: Mission
Focused, Component Based, Iterative, Timeboxed, Risk
Driven, and Change Tolerant.

For many e-business projects the final results may be
fuzzy in the beginning, but the overall mission that
guides the team is well articulated. Mission statements
act as guides that encourage exploration in the begin-
ning, but narrow over the course of a project. A mission
provides boundaries rather than a fixed destination.
Without a good mission and a constant mission refine-
ment process, iterative lifecycles become oscillating life-
cycles—back and forth with no progress. Mission arti-
facts (there may be several types) not only provide
direction, but are used in making critical project trade-off
decisions. Mission artifacts that don’t help make deci-
sions are mere fluff.

The adaptive lifecycle focuses on results, not tasks;
and the results are identified as application components.
Component in this context defines a group of features (or
deliverables) that are to be developed during an iterative
cycle. While documents (for example a data model) may
be defined as a deliverable component, they are always
secondary to a software feature that provides direct re-

sults to a customer.
Iterative cycles emphasize “re-doing” as much as “do-

ing.” In manufacturing, quality programs try to drive out “re-
work” as costly, the result of a broken process. But product
development (software or other) varies considerably from
stamping out the exact same thingamabob on an assembly
line. Actually, the thingamabob was probably designed with
an iterative process. Components normally evolve over sev-
eral iterative cycles as customers provide feedback.

The practice of timeboxing, or setting fixed delivery
times for iterative cycles and projects, has been abused
by many rapid application development (RAD) propo-
nents because they use time deadlines incorrectly. Time
deadlines that are used to bludgeon staff into long hours
or cutting corners on quality are a form of tyranny; they
undermine the collaborative environment that adaptive
development strives to achieve. It took several years of
managing RAD projects (I’m slow) before I realized that
timeboxing was minimally about time—it was really about
focusing and forcing hard tradeoff decisions. In an uncer-
tain environment in which change rates are high, there
needs to be a periodic forcing function to get something
finished. In addition, timeboxing forces a project team
and their customers to continuously re-evaluate the valid-
ity of the project’s mission profile—scope, schedule, re-
sources, and defects. Project teams that can’t—
or won’t—juggle tradeoffs will never succeed in extreme
environments.

As in Barry Boehm’s spiral development model, the
plans for adaptive cycles are driven by analyzing the critical
risks. Adaptive development is also change tolerant, view-
ing the ability to incorporate change as a competitive advan-
tage, not something to be summarily viewed as a “problem.”

“The goal is always—or should
be—to get some working code as soon
as you can. Anything that stands in the
way of that is a problem.” And analysis
paralysis is often Problem Number One,
says Sarkela. “The artificiality of the old
development lifecycle methodologies,
thinking that you could do a preliminary
ninety-two-page analysis and thereby
really understand something, really
makes paralysis inevitable in traditional
approaches.” You end up with stacks of
paper and no code, he warns, because
you’re afraid to move ahead without an
ironclad understanding of the problem.

You’ve got to have the courage to go

ahead, Sarkela stresses, in spite of the
real world’s uncertainties. “And you can
do that only when you don’t have so
much invested in your code that if it’s
wrong you’re afraid to throw it out and
start over, if need be.” Sarkela likes to
have just enough spec to know what he’s
building, and what the user’s needs are.

Once that’s in hand, he collaborates
with the user to get something in place,
using a “review-as-you-write” approach,
with developers working in pairs. “Two
people sharing ownership relieves some
of the stress of being perfect,” Sarkela
says. “Giving up strict code ownership
takes the ego out of the equation, and

means that anyone on the team can go in
and fix code the minute defects are
found.”

All of that helps get code into users’
hands faster, and helps open up the
learning process. “That may be the most
important part of this model,” says
Sarkela. “You learn a lot faster, and a lot
smarter, with something tangible to ex-
amine.” With this working code and early
feedback the hope is that—in software
development, as in real life—subsequent
iterations in our projects benefit from an
ever-deepening functional understand-
ing.

—A. W.

Ju ly/Augus t 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
25

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 2000
26

The Basic Adaptive Lifecycle
While the iterative “Speculate/Collaborate/Learn” cycle is
useful for outlining overall concepts, specifics are necessary
to actually deliver a software application. Figure 2 shows
the basic adaptive lifecycle and each of its components.

S P E C U L A T E :
Initiation and Cycle Planning
There are seven steps in adaptive cycle “speculating”:

1. Conduct the project initiation phase.

2. Determine the project timebox.

3. Determine the optimal number of cycles and the timebox
for each.

4. Write an objective statement for each cycle.

5. Assign primary components to cycles.

6. Assign technology and support components to cycles.

7. Develop a project task list.

Project initiation is similar to that used in any com-
petent project management approach. It involves setting
the project’s mission and objectives, understanding and
documenting constraints, establishing the project organi-
zation and key players, identifying and outlining require-
ments, making initial size and scope estimates, and iden-
tifying key project risks. Since speed is usually a major
consideration in using an adaptive approach, much of the
project initiation data should be gathered in preliminary
Joint Application Development (JAD) sessions. For small
projects, initiation can often be completed in a concen-
trated weeklong effort. Larger projects may require a
“Cycle 0” for more extensive initiation work. (Cycle 0 se-
tups differ from other cycles that have to deliver a tangi-
ble piece of an application to the customer; Cycle 0 in-
volves preparatory deliverables but no pieces of the

application.)
The second step is to set the timebox for the entire pro-

ject. This timebox should be based on the scope, feature set
requirements, estimates, and resources that result from pro-
ject initiation work. Speculating doesn’t abandon estimat-
ing; it just means accepting that any estimates are tenuous.

The third step is to decide on the number of cycles and
assign a timebox to each one. For a small- to medium-sized
application (<5000 function points), cycles usually vary
from four to eight weeks. Some projects may need two-
week cycles, while others might require more than eight
weeks (although this is rare). The overall project schedule
and the degree of uncertainty are two of the factors that de-
termine individual cycle lengths.

After establishing the number of cycles and a schedule
for each, team members perform the fourth step: develop-
ing a theme or objective for each of the cycles. Just as it is
important to establish an overall project objective, each cy-
cle should have its own theme. Cycle milestones are intend-
ed to force product visibility, because without visibility the
product’s defects and mistakes remain hidden. Without vis-
ibility, learning suffers.

A Cycle delivers a demonstrable set of components to a
customer review process—it makes the product visible to
the customer. Within the cycles, Builds deliver working
components to an integration process—they make the prod-
uct visible to the development team. With this increased vis-
ibility, testing is an ongoing, integral part of each develop-
ment cycle—not some activity tacked on at the end.

The fifth and sixth steps assign components to cycles.
The most important criteria for component assignment are
that every cycle must deliver a visible, tangible result to an
end user. Assigning components to cycles is a multi-dimen-
sional exercise. Factors in the decision include:

■ Making sure each cycle delivers something useful to the customer

■ Identifying and managing high-risk items early in the project

■ Scheduling components to accommodate natural dependencies

■ Balancing resource utilization

SPECULATE COLLABORATE LEARN

Project
initiation

Adaptive
cycle

planning

Concurrent
component
engineering

Quality
review

Final
Q/A and
release

LEARNING LOOP

FIGURE 2 Adaptive lifecycle activities

A
N

N
IE

B

IS
S

E
T

T

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

Ju ly/Augus t 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
27

A spreadsheet is often the most effective tool for
component-based cycle planning. (See Figure 3.) The first
column contains all the identified components. There is
also a column for each cycle. As shown in the figure, as
decisions are made on the scheduling of each component,
a team member checks the cycle column. Experience has
shown that this type of planning—done as a team rather
than performed exclusively by the project manager—pro-
vides better understanding of the project than a tradition-
al task-based approach. Component-based planning re-
flects the uniqueness of each project. While there may be,
and should be, “best practices” for activities such as
analysis, object modeling, or design, what makes these ac-
tivities unique to a project are the components to be deliv-
ered to the customer.

Finally, for those who may be uncomfortable without
a task list, each component can become the target of a
task: Develop component A. Additional tasks, not directly
related to components but necessary for project comple-
tion, can also be added. There may be certain tasks added
to the project plan in addition to the components, but the
bulk of the plan is a “component breakdown structure,”
rather than a “work breakdown structure.”

C O L L A B O R A T E :
Concurrent Component Engineering
Concurrent component engineering delivers the working
components. Managers are more concerned about collabo-
ration and dealing with concurrency than about the details
of designing, testing, and coding. As mentioned earlier, for
many projects today—involving distributed teams, varying
alliance partners, and broad-based knowledge—how peo-
ple interact and how they manage interdependencies are
critical issues. For smaller projects, especially those in
which team members work in physical proximity, concur-
rency can be handled informally.
Dependencies can be handled by
hallway chats and whiteboard
scribbling. In larger projects, how-
ever, managing concurrency re-
quires an advanced adaptive life-
cycle whose description is beyond
the scope of this article.

For small single-site teams,
collaborative development can be
enhanced by practices promoted
by Extreme Programming. Pair
programming, for example, en-
courages two people to work close-
ly together: each drives the other a
little harder to excel.

Collective ownership, another
Extreme Programming practice,
provides another level to the col-
laboration begun by pair program-
ming. This approach, in which any-
one on the team can change the
code, encourages the entire team
to work more closely together.
Everyone—each individual, each
pair—strives a little harder to pro-

duce high-quality designs, code, and test cases.
Relationships are the new bottom line in business, as

Roger Lewin and Birute Regine write in their new book The
Soul at Work: Embracing Complexity Science for Busi-
ness Success. Relationships are important, they point out,
“not simply for humanistic reasons, but as a way to pro-
mote adaptability and business success.” Building alliances
across organizations, collaborative problem solving and de-
cision making, and sharing tacit knowledge are replacing
rigor, control, and process as the building-block skills re-
quired to deliver successful projects.

L E A R N :
Quality Review
The basic adaptive management approach is to maintain a
focus on the project scope and objective, assign compo-
nents to the delivery team, stand back and let the team fig-
ure out how to deliver the components, and maintain ac-
countability through quality reviews. Quality evolves—not
from micromanaging the process, but from establishing ap-
propriate exit criteria and review practices. These feedback
practices are key to learning.

There are four general categories of things to learn at
the end of each development cycle:

■ Result quality from the customer’s perspective

■ Result quality from a technical perspective

■ The functioning of the delivery team and the practices they are utilizing

■ The project’s status

Providing visibility and feedback from the customers is
the first priority in most projects. One vehicle for this is a

C I C 2 C 3 C 4

Cycle Delivery Dates 1-Jun 1-Jul 1-Aug 1-Sep

Primary Features

Order Entry X
Order Pricing X
Warehouse Picking X
Partial Order Ship X
Calculate Reorders X
System Interfaces X
Pricing Error Handling X
Security & Control X

Technology Components

Install Visual Basic X
Install Comm Lines X

Support Components

Client/Server Arch X
Develop Conversion Pln X X
High-Level Data Model X

FIGURE 3 A sample Component Cycle Plan

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 2000
28

customer focus group. Derived from the concept of market-
ing focus groups, these group sessions are designed to ex-
plore a working model of the application and record cus-
tomer change requests. They are facilitated sessions,
similar to JAD sessions, but rather than generating require-
ments or defining project plans, customer focus groups are
designed to review the application itself. In the end, cus-
tomers relate best to a working application, not documents
or diagrams. Where prototyping sessions involve individu-
als or small groups in helping to define an application, fo-
cus groups are more formal cycle milestones.

A second key to delivering quality products is review-
ing technical quality. A standard vehicle for technical quali-
ty assessment is the technical review. A design review might
occur at the end of a cycle, whereas code reviews or test
plan reviews might occur during the cycle. The focus of re-
views should be to learn—not to find fault.

The third feedback process is to monitor the team’s
performance. This might be called the people-and-process
review. Project postmortems and end-of-cycle mini-post-
mortems are needed.

There are four basic postmortem questions:

■ What’s working?

■ What’s not working?

■ What do we need to do more of?

■ What do we need to do less of?

Postmortems tell more about an organization’s ability
to learn than nearly any other practice. Good postmortems
force us to learn about ourselves and how we work.

The fourth category of review is not strictly related to
quality, but is instead a review of project status. This review
leads directly into a re-planning effort at the beginning of
each subsequent cycle.

The basic questions are:

■ Where is the project?

■ Where is it versus our plans?

■ Where should it be?

Determining a project’s status is different in a com-
ponent-based approach. In a waterfall lifecycle, complet-
ed deliverables mark the end of each major phase (a com-
plete requirements document, for example, marks the end
of the specification phase). In a component-based ap-
proach, rather than having a single completed document
or other deliverable, the status often reflects multiple
components in a variety of states of completion.

Recognize that not everyone will feel comfortable with
this method. Many managers experienced in traditional ap-
proaches, for example, may feel a distinct loss of control
and influence. Their “gut feelings” about progress have to
be re-initialized.

The last of the status questions is particularly important:
Where “should” the project be? Since the plans are under-

stood to be speculative, measurement against them is insuffi-
cient to establish progress. The project team and sponsors
need to continually ask, “What have we learned so far, and
does it change our perspective on where we need to be?”

Toward the Future
Optimizing cultures believe in efficiency, control, and
process rigor. But the Internet era has altered the fundamen-
tal premise on which these beliefs depend: predictability. No
one would labor under the delusion that the results of a
twelve-month e-commerce project (why one would be this
long is another issue) could be predicted with any degree of
accuracy—there are too many variables, changing too fast.

Optimizing cultures tend to see the world as black or
white. Adaptive cultures, on the other hand, recognize gray.
They understand that planning is tenuous and control nearly
impossible. Adaptive cultures understand that success
evolves from a succession of trying different alternatives,
and learning from both success and failure. Adaptive cultures
understand that learning about what we don’t know is often
as important as doing things we already know how to do.

Not every project is a complex one. In fact, in many orga-
nizations complex projects may be less than twenty percent of
the total (but a very critical twenty percent). Solving those
complex software development and testing problems does not
mean abandoning good software management and engineer-
ing practices, but it does mean adopting a new perspective on
their use. It means understanding that software development
is not a mechanical process, but an organic, non-linear,
non-deterministic one. It means altering some basic princi-
ples of how organizations work to solve complex problems,
and adopting new practices geared to those beliefs. Shifting
from an optimizing culture to an adaptive one means gearing
up for the future, rather than lounging in the past. STQE

Jim Highsmith (jimh@adaptivesd.com) is President
of Information Architects, Inc., author of Adaptive Soft-
ware Development: A Collaborative Approach to Managing
Complex Systems, editor of E-business Application Delivery,
and helps IT organizations and software companies
adapt to the accelerated pace of development.

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/

