

 Jump to navigation

 Welcome

 	Login
	Join
	Member Benefits

 Sort by:

 Relevance

 Oldest

 Newest

 Relevance

 Oldest
 Newest

 	

 Home

	

 Q&A

	

 Topics

 	

 Agile CM & ALM

	

 ALM & SCM Tools

	

 Application Lifecycle Management

	

 Build Engineering

	

 Change Management

	

 Cloud

	

 Continuous Integration

	

 DevOps

	

 Environment Management

	

 Mobile

	

 Release Management

	

 Version Control

	

 Resources

 	

 Articles

	

 Better Software Magazine

	

 Conference Presentations

	

 Interviews and Videos

	

 White Papers & Downloads

	

 Events

 	

 Conferences

	

 Training

	

 Web Seminars

 Applying Configuration Management to Agile Teams

 [article]

 By Mario Moreira - July 14, 2008

 Share URL

 Summary:
A variety of agile software development methods and practices have now been around for a solid ten years and existed for at least another ten years prior. Configuration management (CM) for agile development has now been discussed since the turn of the century. So what are the core principles of CM and how can CM help agile teams?
CM is a recognized engineering discipline that provides processes and technologies to identify and control items to ensure integrity and quality of the product under development. CM focuses on four principals that include identification, control, audit, and report (aka status accounting). Typically, the four principles are instantiated into version control, change control, problem management, build management, release engineering, CM audits, and metrics and reporting on CM activities and baselines. Simply put, the key to CM is that it enables development teams to identify the pieces that make up an application. By identifying the pieces, an application or organization is better able to control changes to the pieces, therefore the environment. So what does this mean to agile? Are these principals relevant in an agile development?
The short answer is yes. “Identify” and “control” are critical to the ability to rapidly change which is a key part of agile. The long answer is that CM should be tailored to meet the pace of agile development. CM should support the agile working process while not sacrificing the CM principles. CM should ensure the integrity of the value stream, by eliminating waste and being lean while enabling control of the changes. Part of this means that what gets prioritized or ranked as having the highest value is what should get delivered. By identifying all of the pieces of a value stream, you can more easily identify the waste. There will always be rejected work, incomplete work, and defects by the end of an iteration, and CM principles can help identify them.
Adjusting CM for Agile
 Now that agile has been around awhile, it is important to understand that the implementation of CM should be adjusted to ensure agile principles remain intact without damaging any of the CM principles. Keep in mind that identifying, controlling, auditing, and reporting are CM principles that are agnostic to the development methodology applied. As long as the CM principles remain intact, CM can be applied in different ways per the need of the development methodology.
In many cases, CM finds itself in an organization that has a traditional methodology that consists of waterfall or sometimes a hybrid that has some parallel phases. Less frequently, but more often than in the past, CM finds itself in an organization that is agile (or part agile and part traditional). In all cases, as agile gets introduced, the implementation of CM should be adjusted to fit the need of agile development methodology. So, the question is, what are some of the adjustments to CM to ensure that it fits the need of agile development while still maintaining the principles of CM? Some areas to consider are the following:

Think Smaller
 One of the key focuses in agile is to think in smaller iterations and increments of work. CM must support the ability to manage smaller increments of work and the increase in the rate of change. CM for agile is not minimal CM, but CM that can handle rapid identification and control in order to maintain the high pace of change while at the same time minimizes the effort in managing the change.
While this is really more of a product management or release management function, CM needs to be ready to accommodate the smaller chunks of work and higher rate of change. Typically this means that there are more incremental deliveries (both internal and external) with the implication of a greater need for automation, adjustments in branching and a stronger need for automated merging (more on this shortly).

Build Continuously
 In a traditional development methodology with longer release cycles, building the code does not typically start until the development phase and the build frequently may be weekly with some teams reducing this to several times a week or even nightly. In an agile methodology, builds should be continuous meaning as frequently as daily or nightly and more typically after every check-in (or promotion) into the integration stream.
Also, it is critical that a successful build occur in the private workspace with the local changes and the latest baseline of code from the parent or backing stream prior to promoting or checking in the code to the parent stream (note, this is a good practice irrespective of the development methodology used).
The ability to perform continuous builds also implies that you have both the tools and processes in place to manage this frequency. Implementing build tools such as CruiseControl or BuildForge (and there are many others) will help to achieve this. Another option is to script a build function upon check-in.
In addition, there is a strong need to understand the current build practice and adapt it with the build types that are needed (private, shared, integration, release) and levels of builds (component, product, etc.). This helps determine where the bottle-necks are - ergo, where the waste is.

Workspaces, Branching, and Merging
 In Agile, everyone should have their own workspace. There may be a need for shared workspaces if pair programming is being used. This way, the same two people can share the workspace and changes therein. Most of the time they will work together, but sometimes they may need to work separately.
The number of branches that are needed depends on the agile project and how it integrates with other projects. If the Agile project is small and independent of other projects, having a private workspace off of the mainline is not unreasonable. However, as the team gets larger, the need to have another layer of integration between personal workspace and main-line may be needed, but one should attempt to keep this a minimum if possible to reduce effort in integration.
With the rapid pace of agile also comes the potential need for automated merging. Most CM tools today come with this feature so this should be a given in most cases. If not, consider upgrading. This becomes more of a need the larger the agile project is or when more people must touch the same code modules. CM Co-op Evironments
 If your organization plans to deploy agile in a big way, you need to have a CM co-op environment (tools, infrastructure, and processes) available to quickly bring agile projects online and use CM immediately.
In a more traditional methodology, you have until the development phase to get the CM environment up and running. With an agile methodology, the CM environment needs to be ready right after iteration planning which is much earlier than the development phase of a more traditional method.
This is where an organization should consider a CM co-op service model to more quickly bring projects into using CM environment. This can be particularly advantageous when an organization is trying to bring several agile projects online within the same time period.
The CM co-op eliminates the need for installing the CM tools, setting up the infrastructure, and establishing the processes. Instead, all that needs to occur is either setting up a repository following the established CM process or setting up a project branch within an existing repository.

Automate
 Simply put, CM for agile requires more automation. Agile implies that the project team is developing product earlier and faster than the traditional methodology. Manual processes start to become bottlenecks to the progress that Agile can provide. Moving to more automated solutions removes bottlenecks and allows the team to focus more on development.
Of course, having automation within any methodology is beneficial, but for agile it becomes necessary. Some examples previously discussed are build automation (for continuous builds) and merge automation. In addition, unit test automation and integration test automation can be added. Automating other types of testing is also beneficial (e.g., regression testing, performance testing, etc.) but outside of the realm of CM.
Moving Change Control Into Iteration Planning
 In a traditional development methodology, change control meetings are used to review and manage change. It is needed because the project is long enough that it has passed a requirements baseline phase and changes must now be managed. Because agile works in short iterations,
Change control is not needed and becomes imbedded in the iteration planning session. Of course, changes can get identified at any time and should be captured. However, the changes should get discussed during the next iteration planning session and not within iteration of work. Keep in mind there are times that a change does stop the iteration due to the nature of the change, but typically this is rare.

Role
 A CM professional can support development in both a traditional methodology and an agile methodology at the same time. On the agile projects, the CM professionals (particularly build and release engineers) should be invited to the daily stand-up meetings to ensure they hear of any CM-related problems without delay for quicker resolution.
Since daily stand-ups typically last no more than 15 minutes, this is not an unreasonable burden to the CM professional and helps them understand the context of the work at hand. Note, if the daily stand-up meetings last longer than 15 minutes, then it is probably breaking an agile rule and should be investigated.

 If the build process is automated or well scripted, the CM role may also be shared by the development folks. In general, if it is the final build of the iteration (which always has the possibility of becoming the release build), then the CM professional should be involved. The CM professional should continue to be the person to migrate the built code to the next level to ensure integrity.

Adjusting CM metrics to identify waste
 CM metrics can be a valuable part of any methodology, especially when they are focused on measuring waste which is often a key component of agile related metrics. Introducing the notion of waste from lean methods can help. This focuses on over-production, wait-time, transportation, processing, inventory, motion, and defects as introduced by Taiichi Ohno for manufacturing, then translated by Mary Poppendieck for software development.
Examples of CM metrics that can help an agile project are:
· Compare the stories or requirements that were prioritized for the release versus what was delivered (inventory or requirements).
· Identify the additional changes made not identified in the value stream (over-production or extra features).
· Capture time spent on recovery from broken builds (defects). Broken builds are outages and should be measured.
· Identify the number of builds that occurred vs. what was used further down the migration path (extra processing). This determines what the downstream processes can actually handle.
Summary
 CM is critical to the success of all software development methodologies. The CM principles ensure the integrity of the product under development. CM may be implemented differently, though, as long as the CM principles remain intact. When moving from a more traditional methodology to agile, consider the importance of adjusting the CM processes to meet the pace of agile development and ensure the integrity of the value stream.
Focusing on implementing CM to best support shorter releases, continuous build, workspaces, branching and merging, automation, CM roles, and CM metrics is a way to support Agile and derive the benefits therein.
References
1. Software Configuration Management Implementation Roadmap , Chapter 1 section 2.1, by Mario Moreira, Wiley Publishing, June 04.
2. Lean-based Metrics for Agile CM Environment , by Robert Cowham, Brad Appleton, and Steve Berczuk, CM Crossroad CM Journal, March 2007
Lean Development Principles for Branching and Merging , by Robert Cowham, Brad Appleton, and Steve Berczuk, CM Crossroad CM Journal, July 2007
3. "Principals of Leaning Thinking" by Mary Poppendieck, Poppendieck LLC, 2002

Tags:
agile
configuration management
lean

agile scm

 	Login or Join to add your comment

 About the author

Mario Moreira

Mario Moreira is a VP of Client Engagement and Master Agile Coach at Emergn focusing on business success by increasing value of products, optimizing flow for faster delivery, and increasing quality through customer feedback. With a CSM and CSP, he has Scrum, XP, and Kanban experience from team to enterprise-level agile transformations, coaching, and team building. Mario authored Being Agile—Your Roadmap to Successful Adoption, Adapting Configuration Management for Agile Teams, Software Configuration Management Implementation Roadmap, and Agile for Dummies. He writes on his blog at Agile Adoption Roadmap.

 CMCrossroads is a TechWell community.

Through conferences, training, consulting, and online resources, TechWell helps you develop and deliver great software every day.

 Most Popular

 An Overview of Linux Exit Codes
 [article]

 The Basics: VPATH and vpath
 [article]

 GNU Make path handling
 [article]

 The Shift-Left Approach to Software Testing
 [article]

 CI/CD in Kubernetes with ArgoCD: A Practical Guide
 [article]

 Follow Us

 Upcoming Events

 	
 Apr 28 	
 STAREAST
Software Testing Conference in Orlando & Online
	
 Jun 02 	
 AI Con USA
Bridging Minds and Machines
	
 Sep 22 	
 STARWEST
Software Testing Conference in Anaheim & Online
	
 Oct 13 	
 Agile + DevOps USA
The Conference for Agile and DevOps Professionals

 Recommended Web Seminars

 	
 Mar 28 	
 The Testing Practices Fueling High-Performing Software Teams
	
 On Demand 	
 Building Confidence in Your Automation
	
 On Demand 	
 Leveraging Open Source Tools for DevSecOps
	
 On Demand 	
 Five Reasons Why Agile Isn't Working
	
 On Demand 	
 Building a Stellar Team

 See All

 Featured Resources

 	
 The Ultimate AI Testing Playbook | Keysight
	
 DevOps Continuous Delivery | TechWell
	
 Open Source Testing Tools eGuide | TechWell
	
 DevSecOps eGuide | TechWell
	
 AI and the Future of Testing eGuide | TechWell

 	About Us
	Contact
	Advertise With Us
	Terms of Use
	Privacy Policy
	RSS
	Contribute
	Site Feedback
	Sitemap

 ©2011-2024 TechWell Corp.

